| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcringcsetcALTV2.r |
⊢ 𝑅 = ( RingCat ‘ 𝑈 ) |
| 2 |
|
funcringcsetcALTV2.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 3 |
|
funcringcsetcALTV2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
funcringcsetcALTV2.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 5 |
|
funcringcsetcALTV2.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 6 |
|
funcringcsetcALTV2.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 11 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑋 ) ∈ V ) |
| 12 |
7 9 10 11
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |