| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcringcsetcALTV2.r |
⊢ 𝑅 = ( RingCat ‘ 𝑈 ) |
| 2 |
|
funcringcsetcALTV2.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 3 |
|
funcringcsetcALTV2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
funcringcsetcALTV2.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 5 |
|
funcringcsetcALTV2.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 6 |
|
funcringcsetcALTV2.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 7 |
|
funcringcsetcALTV2.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) ) |
| 8 |
|
f1oi |
⊢ ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) –1-1-onto→ ( 𝑋 RingHom 𝑌 ) |
| 9 |
|
f1of |
⊢ ( ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) –1-1-onto→ ( 𝑋 RingHom 𝑌 ) → ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) ⟶ ( 𝑋 RingHom 𝑌 ) ) |
| 10 |
8 9
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) ⟶ ( 𝑋 RingHom 𝑌 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 13 |
11 12
|
rhmf |
⊢ ( 𝑓 ∈ ( 𝑋 RingHom 𝑌 ) → 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 14 |
|
fvex |
⊢ ( Base ‘ 𝑌 ) ∈ V |
| 15 |
|
fvex |
⊢ ( Base ‘ 𝑋 ) ∈ V |
| 16 |
14 15
|
pm3.2i |
⊢ ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) |
| 17 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↔ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| 18 |
17
|
bicomd |
⊢ ( ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 19 |
16 18
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 20 |
19
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 22 |
1 2 3 4 5 6
|
funcringcsetcALTV2lem1 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 23 |
21 22
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 24 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 25 |
1 2 3 4 5 6
|
funcringcsetcALTV2lem1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 26 |
24 25
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 27 |
23 26
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 29 |
20 28
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
| 30 |
29
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 31 |
13 30
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑋 RingHom 𝑌 ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 32 |
31
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 RingHom 𝑌 ) ⊆ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
| 33 |
10 32
|
fssd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
| 34 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ) |
| 35 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 36 |
|
eqid |
⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) |
| 37 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 38 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 39 |
1 3 35 36 37 38
|
ringchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
| 40 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
| 41 |
1 2 3 4 5 6
|
funcringcsetcALTV2lem2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 42 |
24 41
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 43 |
1 2 3 4 5 6
|
funcringcsetcALTV2lem2 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 44 |
21 43
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 45 |
2 35 40 42 44
|
setchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
| 46 |
34 39 45
|
feq123d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 47 |
33 46
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) ) |