Metamath Proof Explorer


Theorem funcringcsetclem6ALTV

Description: Lemma 6 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R=RingCatALTVU
funcringcsetcALTV.s S=SetCatU
funcringcsetcALTV.b B=BaseR
funcringcsetcALTV.c C=BaseS
funcringcsetcALTV.u φUWUni
funcringcsetcALTV.f φF=xBBasex
funcringcsetcALTV.g φG=xB,yBIxRingHomy
Assertion funcringcsetclem6ALTV φXBYBHXRingHomYXGYH=H

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R=RingCatALTVU
2 funcringcsetcALTV.s S=SetCatU
3 funcringcsetcALTV.b B=BaseR
4 funcringcsetcALTV.c C=BaseS
5 funcringcsetcALTV.u φUWUni
6 funcringcsetcALTV.f φF=xBBasex
7 funcringcsetcALTV.g φG=xB,yBIxRingHomy
8 1 2 3 4 5 6 7 funcringcsetclem5ALTV φXBYBXGY=IXRingHomY
9 8 3adant3 φXBYBHXRingHomYXGY=IXRingHomY
10 9 fveq1d φXBYBHXRingHomYXGYH=IXRingHomYH
11 fvresi HXRingHomYIXRingHomYH=H
12 11 3ad2ant3 φXBYBHXRingHomYIXRingHomYH=H
13 10 12 eqtrd φXBYBHXRingHomYXGYH=H