Metamath Proof Explorer


Theorem funcringcsetclem6ALTV

Description: Lemma 6 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R = RingCatALTV U
funcringcsetcALTV.s S = SetCat U
funcringcsetcALTV.b B = Base R
funcringcsetcALTV.c C = Base S
funcringcsetcALTV.u φ U WUni
funcringcsetcALTV.f φ F = x B Base x
funcringcsetcALTV.g φ G = x B , y B I x RingHom y
Assertion funcringcsetclem6ALTV φ X B Y B H X RingHom Y X G Y H = H

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R = RingCatALTV U
2 funcringcsetcALTV.s S = SetCat U
3 funcringcsetcALTV.b B = Base R
4 funcringcsetcALTV.c C = Base S
5 funcringcsetcALTV.u φ U WUni
6 funcringcsetcALTV.f φ F = x B Base x
7 funcringcsetcALTV.g φ G = x B , y B I x RingHom y
8 1 2 3 4 5 6 7 funcringcsetclem5ALTV φ X B Y B X G Y = I X RingHom Y
9 8 3adant3 φ X B Y B H X RingHom Y X G Y = I X RingHom Y
10 9 fveq1d φ X B Y B H X RingHom Y X G Y H = I X RingHom Y H
11 fvresi H X RingHom Y I X RingHom Y H = H
12 11 3ad2ant3 φ X B Y B H X RingHom Y I X RingHom Y H = H
13 10 12 eqtrd φ X B Y B H X RingHom Y X G Y H = H