Metamath Proof Explorer


Theorem funexw

Description: Weak version of funex that holds without ax-rep . If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion funexw FunFdomFBranFCFV

Proof

Step Hyp Ref Expression
1 xpexg domFBranFCdomF×ranFV
2 1 3adant1 FunFdomFBranFCdomF×ranFV
3 funrel FunFRelF
4 relssdmrn RelFFdomF×ranF
5 3 4 syl FunFFdomF×ranF
6 5 3ad2ant1 FunFdomFBranFCFdomF×ranF
7 2 6 ssexd FunFdomFBranFCFV