Metamath Proof Explorer


Theorem funopab

Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995)

Ref Expression
Assertion funopab Funxy|φx*yφ

Proof

Step Hyp Ref Expression
1 relopabv Relxy|φ
2 nfopab1 _xxy|φ
3 nfopab2 _yxy|φ
4 2 3 dffun6f Funxy|φRelxy|φx*yxxy|φy
5 1 4 mpbiran Funxy|φx*yxxy|φy
6 df-br xxy|φyxyxy|φ
7 opabidw xyxy|φφ
8 6 7 bitri xxy|φyφ
9 8 mobii *yxxy|φy*yφ
10 9 albii x*yxxy|φyx*yφ
11 5 10 bitri Funxy|φx*yφ