Metamath Proof Explorer


Theorem funopfvb

Description: Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of Monk1 p. 42. (Contributed by NM, 26-Jan-1997)

Ref Expression
Assertion funopfvb FunFAdomFFA=BABF

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fnopfvb FFndomFAdomFFA=BABF
3 1 2 sylanb FunFAdomFFA=BABF