Metamath Proof Explorer


Theorem funoprabg

Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007)

Ref Expression
Assertion funoprabg xy*zφFunxyz|φ

Proof

Step Hyp Ref Expression
1 mosubopt xy*zφ*zxyw=xyφ
2 1 alrimiv xy*zφw*zxyw=xyφ
3 dfoprab2 xyz|φ=wz|xyw=xyφ
4 3 funeqi Funxyz|φFunwz|xyw=xyφ
5 funopab Funwz|xyw=xyφw*zxyw=xyφ
6 4 5 bitr2i w*zxyw=xyφFunxyz|φ
7 2 6 sylib xy*zφFunxyz|φ