Metamath Proof Explorer


Theorem fv1prop

Description: The function value of unordered pair of ordered pairs with first components 1 and 2 at 1. (Contributed by AV, 4-Feb-2023)

Ref Expression
Assertion fv1prop A V 1 A 2 B 1 = A

Proof

Step Hyp Ref Expression
1 1ex 1 V
2 1ne2 1 2
3 fvpr1g 1 V A V 1 2 1 A 2 B 1 = A
4 1 2 3 mp3an13 A V 1 A 2 B 1 = A