Metamath Proof Explorer


Theorem fvdiagfn

Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis fdiagfn.f F=xBI×x
Assertion fvdiagfn IWXBFX=I×X

Proof

Step Hyp Ref Expression
1 fdiagfn.f F=xBI×x
2 sneq x=Xx=X
3 2 xpeq2d x=XI×x=I×X
4 simpr IWXBXB
5 snex XV
6 xpexg IWXVI×XV
7 5 6 mpan2 IWI×XV
8 7 adantr IWXBI×XV
9 1 3 4 8 fvmptd3 IWXBFX=I×X