Metamath Proof Explorer


Theorem fvdifsupp

Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses fvdifsupp.1 φ F Fn A
fvdifsupp.2 φ A V
fvdifsupp.3 φ Z W
fvdifsupp.4 φ X A supp Z F
Assertion fvdifsupp φ F X = Z

Proof

Step Hyp Ref Expression
1 fvdifsupp.1 φ F Fn A
2 fvdifsupp.2 φ A V
3 fvdifsupp.3 φ Z W
4 fvdifsupp.4 φ X A supp Z F
5 4 eldifbd φ ¬ X supp Z F
6 4 eldifad φ X A
7 elsuppfn F Fn A A V Z W X supp Z F X A F X Z
8 1 2 3 7 syl3anc φ X supp Z F X A F X Z
9 6 8 mpbirand φ X supp Z F F X Z
10 9 necon2bbid φ F X = Z ¬ X supp Z F
11 5 10 mpbird φ F X = Z