Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fveq1
Next ⟩
fveq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fveq1
Description:
Equality theorem for function value.
(Contributed by
NM
, 29-Dec-1996)
Ref
Expression
Assertion
fveq1
⊢
F
=
G
→
F
⁡
A
=
G
⁡
A
Proof
Step
Hyp
Ref
Expression
1
breq
⊢
F
=
G
→
A
F
x
↔
A
G
x
2
1
iotabidv
⊢
F
=
G
→
ι
x
|
A
F
x
=
ι
x
|
A
G
x
3
df-fv
⊢
F
⁡
A
=
ι
x
|
A
F
x
4
df-fv
⊢
G
⁡
A
=
ι
x
|
A
G
x
5
2
3
4
3eqtr4g
⊢
F
=
G
→
F
⁡
A
=
G
⁡
A