Metamath Proof Explorer


Theorem fveqprc

Description: Lemma for showing the equality of values for functions like slot extractors E at a proper class. Extracted from several former proofs of lemmas like zlmlem . (Contributed by AV, 31-Oct-2024)

Ref Expression
Hypotheses fveqprc.e E =
fveqprc.y Y = F X
Assertion fveqprc ¬ X V E X = E Y

Proof

Step Hyp Ref Expression
1 fveqprc.e E =
2 fveqprc.y Y = F X
3 1 eqcomi = E
4 fvprc ¬ X V E X =
5 fvprc ¬ X V F X =
6 2 5 eqtrid ¬ X V Y =
7 6 fveq2d ¬ X V E Y = E
8 3 4 7 3eqtr4a ¬ X V E X = E Y