Metamath Proof Explorer


Theorem fveqres

Description: Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995)

Ref Expression
Assertion fveqres FA=GAFBA=GBA

Proof

Step Hyp Ref Expression
1 fvres ABFBA=FA
2 fvres ABGBA=GA
3 1 2 eqeq12d ABFBA=GBAFA=GA
4 3 biimprd ABFA=GAFBA=GBA
5 nfvres ¬ABFBA=
6 nfvres ¬ABGBA=
7 5 6 eqtr4d ¬ABFBA=GBA
8 7 a1d ¬ABFA=GAFBA=GBA
9 4 8 pm2.61i FA=GAFBA=GBA