Metamath Proof Explorer


Theorem fveval1fvcl

Description: The function value of the evaluation function of a polynomial is an element of the underlying ring. (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses fveval1fvcl.q O=eval1R
fveval1fvcl.p P=Poly1R
fveval1fvcl.b B=BaseR
fveval1fvcl.u U=BaseP
fveval1fvcl.r φRCRing
fveval1fvcl.y φYB
fveval1fvcl.m φMU
Assertion fveval1fvcl φOMYB

Proof

Step Hyp Ref Expression
1 fveval1fvcl.q O=eval1R
2 fveval1fvcl.p P=Poly1R
3 fveval1fvcl.b B=BaseR
4 fveval1fvcl.u U=BaseP
5 fveval1fvcl.r φRCRing
6 fveval1fvcl.y φYB
7 fveval1fvcl.m φMU
8 eqid R𝑠B=R𝑠B
9 eqid BaseR𝑠B=BaseR𝑠B
10 3 fvexi BV
11 10 a1i φBV
12 1 2 8 3 evl1rhm RCRingOPRingHomR𝑠B
13 4 9 rhmf OPRingHomR𝑠BO:UBaseR𝑠B
14 5 12 13 3syl φO:UBaseR𝑠B
15 14 7 ffvelcdmd φOMBaseR𝑠B
16 8 3 9 5 11 15 pwselbas φOM:BB
17 16 6 ffvelcdmd φOMYB