Metamath Proof Explorer


Theorem fvixp

Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis fvixp.1 x=CB=D
Assertion fvixp FxABCAFCD

Proof

Step Hyp Ref Expression
1 fvixp.1 x=CB=D
2 elixp2 FxABFVFFnAxAFxB
3 2 simp3bi FxABxAFxB
4 fveq2 x=CFx=FC
5 4 1 eleq12d x=CFxBFCD
6 5 rspccva xAFxBCAFCD
7 3 6 sylan FxABCAFCD