Metamath Proof Explorer


Theorem fvmptrabdm

Description: Value of a function mapping a set to a class abstraction restricting the value of another function. See also fvmptrabfv . (Suggested by BJ, 18-Feb-2022.) (Contributed by AV, 18-Feb-2022)

Ref Expression
Hypotheses fvmptrabdm.f F=xVyGY|φ
fvmptrabdm.r x=Xφψ
fvmptrabdm.v YdomGXdomF
Assertion fvmptrabdm FX=yGY|ψ

Proof

Step Hyp Ref Expression
1 fvmptrabdm.f F=xVyGY|φ
2 fvmptrabdm.r x=Xφψ
3 fvmptrabdm.v YdomGXdomF
4 pm2.1 ¬XdomFXdomF
5 imor YdomGXdomF¬YdomGXdomF
6 ordir ¬XdomF¬YdomGXdomF¬XdomFXdomF¬YdomGXdomF
7 ndmfv ¬XdomFFX=
8 ndmfv ¬YdomGGY=
9 8 rabeqdv ¬YdomGyGY|ψ=y|ψ
10 rab0 y|ψ=
11 9 10 eqtr2di ¬YdomG=yGY|ψ
12 7 11 sylan9eq ¬XdomF¬YdomGFX=yGY|ψ
13 2 rabbidv x=XyGY|φ=yGY|ψ
14 1 dmmpt domF=xV|yGY|φV
15 rabid2 V=xV|yGY|φVxVyGY|φV
16 fvex GYV
17 16 rabex yGY|φV
18 17 a1i xVyGY|φV
19 15 18 mprgbir V=xV|yGY|φV
20 14 19 eqtr4i domF=V
21 20 eleq2i XdomFXV
22 21 biimpi XdomFXV
23 16 rabex yGY|ψV
24 23 a1i XdomFyGY|ψV
25 1 13 22 24 fvmptd3 XdomFFX=yGY|ψ
26 12 25 jaoi ¬XdomF¬YdomGXdomFFX=yGY|ψ
27 6 26 sylbir ¬XdomFXdomF¬YdomGXdomFFX=yGY|ψ
28 27 expcom ¬YdomGXdomF¬XdomFXdomFFX=yGY|ψ
29 5 28 sylbi YdomGXdomF¬XdomFXdomFFX=yGY|ψ
30 3 4 29 mp2 FX=yGY|ψ