Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptrabdm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜑 } ) |
2 |
|
fvmptrabdm.r |
⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
fvmptrabdm.v |
⊢ ( 𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹 ) |
4 |
|
pm2.1 |
⊢ ( ¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹 ) |
5 |
|
imor |
⊢ ( ( 𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹 ) ↔ ( ¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹 ) ) |
6 |
|
ordir |
⊢ ( ( ( ¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺 ) ∨ 𝑋 ∈ dom 𝐹 ) ↔ ( ( ¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹 ) ∧ ( ¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹 ) ) ) |
7 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = ∅ ) |
8 |
|
ndmfv |
⊢ ( ¬ 𝑌 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑌 ) = ∅ ) |
9 |
8
|
rabeqdv |
⊢ ( ¬ 𝑌 ∈ dom 𝐺 → { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } = { 𝑦 ∈ ∅ ∣ 𝜓 } ) |
10 |
|
rab0 |
⊢ { 𝑦 ∈ ∅ ∣ 𝜓 } = ∅ |
11 |
9 10
|
eqtr2di |
⊢ ( ¬ 𝑌 ∈ dom 𝐺 → ∅ = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ) |
12 |
7 11
|
sylan9eq |
⊢ ( ( ¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺 ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ) |
13 |
2
|
rabbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜑 } = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ) |
14 |
1
|
dmmpt |
⊢ dom 𝐹 = { 𝑥 ∈ 𝑉 ∣ { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜑 } ∈ V } |
15 |
|
rabid2 |
⊢ ( 𝑉 = { 𝑥 ∈ 𝑉 ∣ { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜑 } ∈ V } ↔ ∀ 𝑥 ∈ 𝑉 { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜑 } ∈ V ) |
16 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑌 ) ∈ V |
17 |
16
|
rabex |
⊢ { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜑 } ∈ V |
18 |
17
|
a1i |
⊢ ( 𝑥 ∈ 𝑉 → { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜑 } ∈ V ) |
19 |
15 18
|
mprgbir |
⊢ 𝑉 = { 𝑥 ∈ 𝑉 ∣ { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜑 } ∈ V } |
20 |
14 19
|
eqtr4i |
⊢ dom 𝐹 = 𝑉 |
21 |
20
|
eleq2i |
⊢ ( 𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝑉 ) |
22 |
21
|
biimpi |
⊢ ( 𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉 ) |
23 |
16
|
rabex |
⊢ { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ∈ V |
24 |
23
|
a1i |
⊢ ( 𝑋 ∈ dom 𝐹 → { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ∈ V ) |
25 |
1 13 22 24
|
fvmptd3 |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ) |
26 |
12 25
|
jaoi |
⊢ ( ( ( ¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺 ) ∨ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ) |
27 |
6 26
|
sylbir |
⊢ ( ( ( ¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹 ) ∧ ( ¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ) |
28 |
27
|
expcom |
⊢ ( ( ¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹 ) → ( ( ¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ) ) |
29 |
5 28
|
sylbi |
⊢ ( ( 𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹 ) → ( ( ¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } ) ) |
30 |
3 4 29
|
mp2 |
⊢ ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑌 ) ∣ 𝜓 } |