| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptrabfv.f | ⊢ 𝐹  =  ( 𝑥  ∈  V  ↦  { 𝑦  ∈  ( 𝐺 ‘ 𝑥 )  ∣  𝜑 } ) | 
						
							| 2 |  | fvmptrabfv.r | ⊢ ( 𝑥  =  𝑋  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 4 | 3 2 | rabeqbidv | ⊢ ( 𝑥  =  𝑋  →  { 𝑦  ∈  ( 𝐺 ‘ 𝑥 )  ∣  𝜑 }  =  { 𝑦  ∈  ( 𝐺 ‘ 𝑋 )  ∣  𝜓 } ) | 
						
							| 5 |  | fvex | ⊢ ( 𝐺 ‘ 𝑋 )  ∈  V | 
						
							| 6 | 5 | rabex | ⊢ { 𝑦  ∈  ( 𝐺 ‘ 𝑋 )  ∣  𝜓 }  ∈  V | 
						
							| 7 | 4 1 6 | fvmpt | ⊢ ( 𝑋  ∈  V  →  ( 𝐹 ‘ 𝑋 )  =  { 𝑦  ∈  ( 𝐺 ‘ 𝑋 )  ∣  𝜓 } ) | 
						
							| 8 |  | fvprc | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝐹 ‘ 𝑋 )  =  ∅ ) | 
						
							| 9 |  | fvprc | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝐺 ‘ 𝑋 )  =  ∅ ) | 
						
							| 10 | 9 | rabeqdv | ⊢ ( ¬  𝑋  ∈  V  →  { 𝑦  ∈  ( 𝐺 ‘ 𝑋 )  ∣  𝜓 }  =  { 𝑦  ∈  ∅  ∣  𝜓 } ) | 
						
							| 11 |  | rab0 | ⊢ { 𝑦  ∈  ∅  ∣  𝜓 }  =  ∅ | 
						
							| 12 | 10 11 | eqtr2di | ⊢ ( ¬  𝑋  ∈  V  →  ∅  =  { 𝑦  ∈  ( 𝐺 ‘ 𝑋 )  ∣  𝜓 } ) | 
						
							| 13 | 8 12 | eqtrd | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝐹 ‘ 𝑋 )  =  { 𝑦  ∈  ( 𝐺 ‘ 𝑋 )  ∣  𝜓 } ) | 
						
							| 14 | 7 13 | pm2.61i | ⊢ ( 𝐹 ‘ 𝑋 )  =  { 𝑦  ∈  ( 𝐺 ‘ 𝑋 )  ∣  𝜓 } |