| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvopab5.1 |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
| 2 |
|
fvopab5.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 4 |
|
df-fv |
⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑧 𝐴 𝐹 𝑧 ) |
| 5 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐴 𝐹 𝑧 ↔ 𝐴 𝐹 𝑦 ) ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 7 |
|
nfopab2 |
⊢ Ⅎ 𝑦 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
| 8 |
1 7
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐹 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
| 10 |
6 8 9
|
nfbr |
⊢ Ⅎ 𝑦 𝐴 𝐹 𝑧 |
| 11 |
|
nfv |
⊢ Ⅎ 𝑧 𝐴 𝐹 𝑦 |
| 12 |
5 10 11
|
cbviotaw |
⊢ ( ℩ 𝑧 𝐴 𝐹 𝑧 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) |
| 13 |
4 12
|
eqtri |
⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 15 |
|
nfopab1 |
⊢ Ⅎ 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
| 16 |
1 15
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 18 |
14 16 17
|
nfbr |
⊢ Ⅎ 𝑥 𝐴 𝐹 𝑦 |
| 19 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
| 20 |
18 19
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ↔ 𝜓 ) |
| 21 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
| 22 |
21 2
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ↔ 𝜑 ) ↔ ( 𝐴 𝐹 𝑦 ↔ 𝜓 ) ) ) |
| 23 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
| 24 |
1
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
| 25 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜑 ) |
| 26 |
23 24 25
|
3bitri |
⊢ ( 𝑥 𝐹 𝑦 ↔ 𝜑 ) |
| 27 |
20 22 26
|
vtoclg1f |
⊢ ( 𝐴 ∈ V → ( 𝐴 𝐹 𝑦 ↔ 𝜓 ) ) |
| 28 |
27
|
iotabidv |
⊢ ( 𝐴 ∈ V → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = ( ℩ 𝑦 𝜓 ) ) |
| 29 |
13 28
|
eqtrid |
⊢ ( 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝜓 ) ) |
| 30 |
3 29
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝜓 ) ) |