Metamath Proof Explorer


Theorem fvopab5

Description: The value of a function that is expressed as an ordered pair abstraction. (Contributed by NM, 19-Feb-2006) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvopab5.1 F=xy|φ
fvopab5.2 x=Aφψ
Assertion fvopab5 AVFA=ιy|ψ

Proof

Step Hyp Ref Expression
1 fvopab5.1 F=xy|φ
2 fvopab5.2 x=Aφψ
3 elex AVAV
4 df-fv FA=ιz|AFz
5 breq2 z=yAFzAFy
6 nfcv _yA
7 nfopab2 _yxy|φ
8 1 7 nfcxfr _yF
9 nfcv _yz
10 6 8 9 nfbr yAFz
11 nfv zAFy
12 5 10 11 cbviotaw ιz|AFz=ιy|AFy
13 4 12 eqtri FA=ιy|AFy
14 nfcv _xA
15 nfopab1 _xxy|φ
16 1 15 nfcxfr _xF
17 nfcv _xy
18 14 16 17 nfbr xAFy
19 nfv xψ
20 18 19 nfbi xAFyψ
21 breq1 x=AxFyAFy
22 21 2 bibi12d x=AxFyφAFyψ
23 df-br xFyxyF
24 1 eleq2i xyFxyxy|φ
25 opabidw xyxy|φφ
26 23 24 25 3bitri xFyφ
27 20 22 26 vtoclg1f AVAFyψ
28 27 iotabidv AVιy|AFy=ιy|ψ
29 13 28 eqtrid AVFA=ιy|ψ
30 3 29 syl AVFA=ιy|ψ