Metamath Proof Explorer


Theorem fvpr2

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by BJ, 26-Sep-2024)

Ref Expression
Hypotheses fvpr2.1 BV
fvpr2.2 DV
Assertion fvpr2 ABACBDB=D

Proof

Step Hyp Ref Expression
1 fvpr2.1 BV
2 fvpr2.2 DV
3 fvpr2g BVDVABACBDB=D
4 1 2 3 mp3an12 ABACBDB=D