Metamath Proof Explorer


Theorem fvrcllb1d

Description: A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvrcllb1d.r φRV
Assertion fvrcllb1d φRr*R

Proof

Step Hyp Ref Expression
1 fvrcllb1d.r φRV
2 dfrcl4 r*=rVn01rrn
3 prex 01V
4 3 a1i φ01V
5 1ex 1V
6 5 prid2 101
7 6 a1i φ101
8 2 1 4 7 fvmptiunrelexplb1d φRr*R