Metamath Proof Explorer


Theorem fvtp2

Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses fvtp2.1 BV
fvtp2.4 EV
Assertion fvtp2 ABBCADBECFB=E

Proof

Step Hyp Ref Expression
1 fvtp2.1 BV
2 fvtp2.4 EV
3 tprot ADBECF=BECFAD
4 3 fveq1i ADBECFB=BECFADB
5 necom ABBA
6 1 2 fvtp1 BCBABECFADB=E
7 6 ancoms BABCBECFADB=E
8 5 7 sylanb ABBCBECFADB=E
9 4 8 eqtrid ABBCADBECFB=E