Metamath Proof Explorer


Theorem fzadd2d

Description: Membership of a sum in a finite interval of integers, a deduction version. (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses fzadd2d.1 φM
fzadd2d.2 φN
fzadd2d.3 φO
fzadd2d.4 φP
fzadd2d.5 φJMN
fzadd2d.6 φKOP
fzadd2d.7 φQ=M+O
fzadd2d.8 φR=N+P
Assertion fzadd2d φJ+KQR

Proof

Step Hyp Ref Expression
1 fzadd2d.1 φM
2 fzadd2d.2 φN
3 fzadd2d.3 φO
4 fzadd2d.4 φP
5 fzadd2d.5 φJMN
6 fzadd2d.6 φKOP
7 fzadd2d.7 φQ=M+O
8 fzadd2d.8 φR=N+P
9 5 6 jca φJMNKOP
10 1 2 jca φMN
11 3 4 jca φOP
12 10 11 jca φMNOP
13 fzadd2 MNOPJMNKOPJ+KM+ON+P
14 12 13 syl φJMNKOPJ+KM+ON+P
15 9 14 mpd φJ+KM+ON+P
16 7 8 oveq12d φQR=M+ON+P
17 15 16 eleqtrrd φJ+KQR