Metamath Proof Explorer


Theorem fzo0n

Description: A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion fzo0n MNNM0..^NM=

Proof

Step Hyp Ref Expression
1 zre NN
2 zre MM
3 suble0 NMNM0NM
4 1 2 3 syl2an NMNM0NM
5 0z 0
6 zsubcl NMNM
7 fzon 0NMNM00..^NM=
8 5 6 7 sylancr NMNM00..^NM=
9 4 8 bitr3d NMNM0..^NM=
10 9 ancoms MNNM0..^NM=