Metamath Proof Explorer


Theorem fzosplitsni

Description: Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion fzosplitsni BACA..^B+1CA..^BC=B

Proof

Step Hyp Ref Expression
1 fzosplitsn BAA..^B+1=A..^BB
2 1 eleq2d BACA..^B+1CA..^BB
3 elun CA..^BBCA..^BCB
4 elsn2g BACBC=B
5 4 orbi2d BACA..^BCBCA..^BC=B
6 3 5 bitrid BACA..^BBCA..^BC=B
7 2 6 bitrd BACA..^B+1CA..^BC=B