Metamath Proof Explorer


Theorem fzp1disj

Description: ( M ... ( N + 1 ) ) is the disjoint union of ( M ... N ) with { ( N + 1 ) } . (Contributed by Mario Carneiro, 7-Mar-2014)

Ref Expression
Assertion fzp1disj MNN+1=

Proof

Step Hyp Ref Expression
1 elfzle2 N+1MNN+1N
2 elfzel2 N+1MNN
3 2 zred N+1MNN
4 ltp1 NN<N+1
5 peano2re NN+1
6 ltnle NN+1N<N+1¬N+1N
7 5 6 mpdan NN<N+1¬N+1N
8 4 7 mpbid N¬N+1N
9 3 8 syl N+1MN¬N+1N
10 1 9 pm2.65i ¬N+1MN
11 disjsn MNN+1=¬N+1MN
12 10 11 mpbir MNN+1=