Metamath Proof Explorer


Theorem fzprval

Description: Two ways of defining the first two values of a sequence on NN . (Contributed by NM, 5-Sep-2011)

Ref Expression
Assertion fzprval x12Fx=ifx=1ABF1=AF2=B

Proof

Step Hyp Ref Expression
1 fz12pr 12=12
2 1 raleqi x12Fx=ifx=1ABx12Fx=ifx=1AB
3 1ex 1V
4 2ex 2V
5 fveq2 x=1Fx=F1
6 iftrue x=1ifx=1AB=A
7 5 6 eqeq12d x=1Fx=ifx=1ABF1=A
8 fveq2 x=2Fx=F2
9 1ne2 12
10 9 necomi 21
11 pm13.181 x=221x1
12 10 11 mpan2 x=2x1
13 12 neneqd x=2¬x=1
14 13 iffalsed x=2ifx=1AB=B
15 8 14 eqeq12d x=2Fx=ifx=1ABF2=B
16 3 4 7 15 ralpr x12Fx=ifx=1ABF1=AF2=B
17 2 16 bitri x12Fx=ifx=1ABF1=AF2=B