Metamath Proof Explorer
Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
fzsplitnr.1 |
|
|
|
fzsplitnr.2 |
|
|
|
fzsplitnr.3 |
|
|
|
fzsplitnr.4 |
|
|
|
fzsplitnr.5 |
|
|
Assertion |
fzsplitnr |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fzsplitnr.1 |
|
2 |
|
fzsplitnr.2 |
|
3 |
|
fzsplitnr.3 |
|
4 |
|
fzsplitnr.4 |
|
5 |
|
fzsplitnr.5 |
|
6 |
1 2 3 4 5
|
elfzd |
|
7 |
6
|
fzsplitnd |
|