Metamath Proof Explorer


Theorem fzsplitnr

Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses fzsplitnr.1 φ M
fzsplitnr.2 φ N
fzsplitnr.3 φ K
fzsplitnr.4 φ M K
fzsplitnr.5 φ K N
Assertion fzsplitnr φ M N = M K 1 K N

Proof

Step Hyp Ref Expression
1 fzsplitnr.1 φ M
2 fzsplitnr.2 φ N
3 fzsplitnr.3 φ K
4 fzsplitnr.4 φ M K
5 fzsplitnr.5 φ K N
6 1 2 3 4 5 elfzd φ K M N
7 6 fzsplitnd φ M N = M K 1 K N