Metamath Proof Explorer


Theorem gausslemma2dlem0b

Description: Auxiliary lemma 2 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0a.p φP2
gausslemma2dlem0b.h H=P12
Assertion gausslemma2dlem0b φH

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0a.p φP2
2 gausslemma2dlem0b.h H=P12
3 eldifi P2P
4 prmuz2 PP2
5 3 4 syl P2P2
6 nnoddn2prm P2P¬2P
7 nnoddm1d2 P¬2PP+12
8 7 biimpa P¬2PP+12
9 8 nnnn0d P¬2PP+120
10 6 9 syl P2P+120
11 5 10 jca P2P2P+120
12 1 11 syl φP2P+120
13 nno P2P+120P12
14 12 13 syl φP12
15 2 14 eqeltrid φH