Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020) (Proof shortened by AV, 10-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | nno | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b3 | |
|
2 | nnnn0 | |
|
3 | nn0o1gt2 | |
|
4 | 2 3 | sylan | |
5 | eqneqall | |
|
6 | 5 | a1d | |
7 | nn0z | |
|
8 | peano2zm | |
|
9 | 7 8 | syl | |
10 | 9 | ad2antlr | |
11 | 2cn | |
|
12 | 11 | mullidi | |
13 | nnre | |
|
14 | 13 | ltp1d | |
15 | 14 | adantr | |
16 | 2re | |
|
17 | peano2nn | |
|
18 | 17 | nnred | |
19 | lttr | |
|
20 | 16 13 18 19 | mp3an2i | |
21 | 20 | expdimp | |
22 | 15 21 | mpd | |
23 | 12 22 | eqbrtrid | |
24 | 1red | |
|
25 | 18 | adantr | |
26 | 2rp | |
|
27 | 26 | a1i | |
28 | 24 25 27 | ltmuldivd | |
29 | 23 28 | mpbid | |
30 | 18 | rehalfcld | |
31 | 30 | adantr | |
32 | 24 31 | posdifd | |
33 | 29 32 | mpbid | |
34 | 33 | adantlr | |
35 | elnnz | |
|
36 | 10 34 35 | sylanbrc | |
37 | nncn | |
|
38 | xp1d2m1eqxm1d2 | |
|
39 | 37 38 | syl | |
40 | 39 | eleq1d | |
41 | 40 | adantr | |
42 | 41 | adantr | |
43 | 36 42 | mpbid | |
44 | 43 | a1d | |
45 | 44 | expcom | |
46 | 6 45 | jaoi | |
47 | 4 46 | mpcom | |
48 | 47 | impancom | |
49 | 1 48 | sylbi | |
50 | 49 | imp | |