Metamath Proof Explorer


Theorem nno

Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion nno N2N+120N12

Proof

Step Hyp Ref Expression
1 eluz2b3 N2NN1
2 nnnn0 NN0
3 nn0o1gt2 N0N+120N=12<N
4 2 3 sylan NN+120N=12<N
5 eqneqall N=1N1N12
6 5 a1d N=1NN+120N1N12
7 nn0z N+120N+12
8 peano2zm N+12N+121
9 7 8 syl N+120N+121
10 9 ad2antlr NN+1202<NN+121
11 2cn 2
12 11 mullidi 12=2
13 nnre NN
14 13 ltp1d NN<N+1
15 14 adantr N2<NN<N+1
16 2re 2
17 peano2nn NN+1
18 17 nnred NN+1
19 lttr 2NN+12<NN<N+12<N+1
20 16 13 18 19 mp3an2i N2<NN<N+12<N+1
21 20 expdimp N2<NN<N+12<N+1
22 15 21 mpd N2<N2<N+1
23 12 22 eqbrtrid N2<N12<N+1
24 1red N2<N1
25 18 adantr N2<NN+1
26 2rp 2+
27 26 a1i N2<N2+
28 24 25 27 ltmuldivd N2<N12<N+11<N+12
29 23 28 mpbid N2<N1<N+12
30 18 rehalfcld NN+12
31 30 adantr N2<NN+12
32 24 31 posdifd N2<N1<N+120<N+121
33 29 32 mpbid N2<N0<N+121
34 33 adantlr NN+1202<N0<N+121
35 elnnz N+121N+1210<N+121
36 10 34 35 sylanbrc NN+1202<NN+121
37 nncn NN
38 xp1d2m1eqxm1d2 NN+121=N12
39 37 38 syl NN+121=N12
40 39 eleq1d NN+121N12
41 40 adantr NN+120N+121N12
42 41 adantr NN+1202<NN+121N12
43 36 42 mpbid NN+1202<NN12
44 43 a1d NN+1202<NN1N12
45 44 expcom 2<NNN+120N1N12
46 6 45 jaoi N=12<NNN+120N1N12
47 4 46 mpcom NN+120N1N12
48 47 impancom NN1N+120N12
49 1 48 sylbi N2N+120N12
50 49 imp N2N+120N12