Metamath Proof Explorer


Theorem nn0o

Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020) (Proof shortened by AV, 2-Jun-2020)

Ref Expression
Assertion nn0o N 0 N + 1 2 0 N 1 2 0

Proof

Step Hyp Ref Expression
1 nn0o1gt2 N 0 N + 1 2 0 N = 1 2 < N
2 1m1e0 1 1 = 0
3 2 oveq1i 1 1 2 = 0 2
4 2cn 2
5 2ne0 2 0
6 4 5 div0i 0 2 = 0
7 3 6 eqtri 1 1 2 = 0
8 0nn0 0 0
9 7 8 eqeltri 1 1 2 0
10 oveq1 N = 1 N 1 = 1 1
11 10 oveq1d N = 1 N 1 2 = 1 1 2
12 11 eleq1d N = 1 N 1 2 0 1 1 2 0
13 12 adantr N = 1 N 0 N + 1 2 0 N 1 2 0 1 1 2 0
14 9 13 mpbiri N = 1 N 0 N + 1 2 0 N 1 2 0
15 14 ex N = 1 N 0 N + 1 2 0 N 1 2 0
16 2z 2
17 16 a1i 2 < N N 0 N + 1 2 0 2
18 nn0z N 0 N
19 18 ad2antrl 2 < N N 0 N + 1 2 0 N
20 2re 2
21 nn0re N 0 N
22 ltle 2 N 2 < N 2 N
23 20 21 22 sylancr N 0 2 < N 2 N
24 23 adantr N 0 N + 1 2 0 2 < N 2 N
25 24 impcom 2 < N N 0 N + 1 2 0 2 N
26 eluz2 N 2 2 N 2 N
27 17 19 25 26 syl3anbrc 2 < N N 0 N + 1 2 0 N 2
28 simprr 2 < N N 0 N + 1 2 0 N + 1 2 0
29 27 28 jca 2 < N N 0 N + 1 2 0 N 2 N + 1 2 0
30 nno N 2 N + 1 2 0 N 1 2
31 nnnn0 N 1 2 N 1 2 0
32 29 30 31 3syl 2 < N N 0 N + 1 2 0 N 1 2 0
33 32 ex 2 < N N 0 N + 1 2 0 N 1 2 0
34 15 33 jaoi N = 1 2 < N N 0 N + 1 2 0 N 1 2 0
35 1 34 mpcom N 0 N + 1 2 0 N 1 2 0