Metamath Proof Explorer


Theorem gausslemma2dlem0g

Description: Auxiliary lemma 7 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φP2
gausslemma2dlem0.m M=P4
gausslemma2dlem0.h H=P12
Assertion gausslemma2dlem0g φMH

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φP2
2 gausslemma2dlem0.m M=P4
3 gausslemma2dlem0.h H=P12
4 1 gausslemma2dlem0a φP
5 fldiv4lem1div2 PP4P12
6 4 5 syl φP4P12
7 6 2 3 3brtr4g φMH