Metamath Proof Explorer


Theorem gbege6

Description: Any even Goldbach number is greater than or equal to 6. Because of 6gbe , this bound is strict. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbege6 ZGoldbachEven6Z

Proof

Step Hyp Ref Expression
1 gbepos ZGoldbachEvenZ
2 gbegt5 ZGoldbachEven5<Z
3 5nn 5
4 3 nnzi 5
5 nnz ZZ
6 zltp1le 5Z5<Z5+1Z
7 4 5 6 sylancr Z5<Z5+1Z
8 7 biimpd Z5<Z5+1Z
9 5p1e6 5+1=6
10 9 breq1i 5+1Z6Z
11 8 10 imbitrdi Z5<Z6Z
12 1 2 11 sylc ZGoldbachEven6Z