Description: Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | gbegt5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgbe | |
|
2 | oddprmuzge3 | |
|
3 | 2 | ancoms | |
4 | oddprmuzge3 | |
|
5 | 4 | ancoms | |
6 | eluz2 | |
|
7 | eluz2 | |
|
8 | zre | |
|
9 | zre | |
|
10 | 3re | |
|
11 | 10 10 | pm3.2i | |
12 | pm3.22 | |
|
13 | le2add | |
|
14 | 11 12 13 | sylancr | |
15 | 14 | ancomsd | |
16 | 3p3e6 | |
|
17 | 16 | breq1i | |
18 | 5lt6 | |
|
19 | 5re | |
|
20 | 19 | a1i | |
21 | 6re | |
|
22 | 21 | a1i | |
23 | readdcl | |
|
24 | 23 | ancoms | |
25 | ltletr | |
|
26 | 20 22 24 25 | syl3anc | |
27 | 18 26 | mpani | |
28 | 17 27 | biimtrid | |
29 | 15 28 | syld | |
30 | 8 9 29 | syl2an | |
31 | 30 | ex | |
32 | 31 | adantl | |
33 | 32 | com23 | |
34 | 33 | exp4b | |
35 | 34 | 3imp | |
36 | 35 | com13 | |
37 | 36 | imp | |
38 | 37 | 3adant1 | |
39 | 7 38 | biimtrid | |
40 | 6 39 | sylbi | |
41 | 40 | imp | |
42 | 3 5 41 | syl2an | |
43 | 42 | an4s | |
44 | 43 | ex | |
45 | 44 | 3adant3 | |
46 | 45 | impcom | |
47 | breq2 | |
|
48 | 47 | 3ad2ant3 | |
49 | 48 | adantl | |
50 | 46 49 | mpbird | |
51 | 50 | ex | |
52 | 51 | a1i | |
53 | 52 | rexlimdvv | |
54 | 53 | imp | |
55 | 1 54 | sylbi | |