Metamath Proof Explorer


Theorem gbegt5

Description: Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbegt5 ZGoldbachEven5<Z

Proof

Step Hyp Ref Expression
1 isgbe ZGoldbachEvenZEvenpqpOddqOddZ=p+q
2 oddprmuzge3 ppOddp3
3 2 ancoms pOddpp3
4 oddprmuzge3 qqOddq3
5 4 ancoms qOddqq3
6 eluz2 p33p3p
7 eluz2 q33q3q
8 zre qq
9 zre pp
10 3re 3
11 10 10 pm3.2i 33
12 pm3.22 qppq
13 le2add 33pq3p3q3+3p+q
14 11 12 13 sylancr qp3p3q3+3p+q
15 14 ancomsd qp3q3p3+3p+q
16 3p3e6 3+3=6
17 16 breq1i 3+3p+q6p+q
18 5lt6 5<6
19 5re 5
20 19 a1i qp5
21 6re 6
22 21 a1i qp6
23 readdcl pqp+q
24 23 ancoms qpp+q
25 ltletr 56p+q5<66p+q5<p+q
26 20 22 24 25 syl3anc qp5<66p+q5<p+q
27 18 26 mpani qp6p+q5<p+q
28 17 27 biimtrid qp3+3p+q5<p+q
29 15 28 syld qp3q3p5<p+q
30 8 9 29 syl2an qp3q3p5<p+q
31 30 ex qp3q3p5<p+q
32 31 adantl 3qp3q3p5<p+q
33 32 com23 3q3q3pp5<p+q
34 33 exp4b 3q3q3pp5<p+q
35 34 3imp 3q3q3pp5<p+q
36 35 com13 p3p3q3q5<p+q
37 36 imp p3p3q3q5<p+q
38 37 3adant1 3p3p3q3q5<p+q
39 7 38 biimtrid 3p3pq35<p+q
40 6 39 sylbi p3q35<p+q
41 40 imp p3q35<p+q
42 3 5 41 syl2an pOddpqOddq5<p+q
43 42 an4s pOddqOddpq5<p+q
44 43 ex pOddqOddpq5<p+q
45 44 3adant3 pOddqOddZ=p+qpq5<p+q
46 45 impcom pqpOddqOddZ=p+q5<p+q
47 breq2 Z=p+q5<Z5<p+q
48 47 3ad2ant3 pOddqOddZ=p+q5<Z5<p+q
49 48 adantl pqpOddqOddZ=p+q5<Z5<p+q
50 46 49 mpbird pqpOddqOddZ=p+q5<Z
51 50 ex pqpOddqOddZ=p+q5<Z
52 51 a1i ZEvenpqpOddqOddZ=p+q5<Z
53 52 rexlimdvv ZEvenpqpOddqOddZ=p+q5<Z
54 53 imp ZEvenpqpOddqOddZ=p+q5<Z
55 1 54 sylbi ZGoldbachEven5<Z