| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbe | ⊢ ( 𝑍  ∈   GoldbachEven   ↔  ( 𝑍  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 2 |  | oddprmuzge3 | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑝  ∈   Odd  )  →  𝑝  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 4 |  | oddprmuzge3 | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑞  ∈   Odd  )  →  𝑞  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝑞  ∈   Odd   ∧  𝑞  ∈  ℙ )  →  𝑞  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 6 |  | eluz2 | ⊢ ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  3  ≤  𝑝 ) ) | 
						
							| 7 |  | eluz2 | ⊢ ( 𝑞  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  3  ≤  𝑞 ) ) | 
						
							| 8 |  | zre | ⊢ ( 𝑞  ∈  ℤ  →  𝑞  ∈  ℝ ) | 
						
							| 9 |  | zre | ⊢ ( 𝑝  ∈  ℤ  →  𝑝  ∈  ℝ ) | 
						
							| 10 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 11 | 10 10 | pm3.2i | ⊢ ( 3  ∈  ℝ  ∧  3  ∈  ℝ ) | 
						
							| 12 |  | pm3.22 | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ ) ) | 
						
							| 13 |  | le2add | ⊢ ( ( ( 3  ∈  ℝ  ∧  3  ∈  ℝ )  ∧  ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ ) )  →  ( ( 3  ≤  𝑝  ∧  3  ≤  𝑞 )  →  ( 3  +  3 )  ≤  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 14 | 11 12 13 | sylancr | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( ( 3  ≤  𝑝  ∧  3  ≤  𝑞 )  →  ( 3  +  3 )  ≤  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 15 | 14 | ancomsd | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( ( 3  ≤  𝑞  ∧  3  ≤  𝑝 )  →  ( 3  +  3 )  ≤  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 16 |  | 3p3e6 | ⊢ ( 3  +  3 )  =  6 | 
						
							| 17 | 16 | breq1i | ⊢ ( ( 3  +  3 )  ≤  ( 𝑝  +  𝑞 )  ↔  6  ≤  ( 𝑝  +  𝑞 ) ) | 
						
							| 18 |  | 5lt6 | ⊢ 5  <  6 | 
						
							| 19 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  5  ∈  ℝ ) | 
						
							| 21 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  6  ∈  ℝ ) | 
						
							| 23 |  | readdcl | ⊢ ( ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ )  →  ( 𝑝  +  𝑞 )  ∈  ℝ ) | 
						
							| 24 | 23 | ancoms | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( 𝑝  +  𝑞 )  ∈  ℝ ) | 
						
							| 25 |  | ltletr | ⊢ ( ( 5  ∈  ℝ  ∧  6  ∈  ℝ  ∧  ( 𝑝  +  𝑞 )  ∈  ℝ )  →  ( ( 5  <  6  ∧  6  ≤  ( 𝑝  +  𝑞 ) )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 26 | 20 22 24 25 | syl3anc | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( ( 5  <  6  ∧  6  ≤  ( 𝑝  +  𝑞 ) )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 27 | 18 26 | mpani | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( 6  ≤  ( 𝑝  +  𝑞 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 28 | 17 27 | biimtrid | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( ( 3  +  3 )  ≤  ( 𝑝  +  𝑞 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 29 | 15 28 | syld | ⊢ ( ( 𝑞  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( ( 3  ≤  𝑞  ∧  3  ≤  𝑝 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 30 | 8 9 29 | syl2an | ⊢ ( ( 𝑞  ∈  ℤ  ∧  𝑝  ∈  ℤ )  →  ( ( 3  ≤  𝑞  ∧  3  ≤  𝑝 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝑞  ∈  ℤ  →  ( 𝑝  ∈  ℤ  →  ( ( 3  ≤  𝑞  ∧  3  ≤  𝑝 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 3  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( 𝑝  ∈  ℤ  →  ( ( 3  ≤  𝑞  ∧  3  ≤  𝑝 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 33 | 32 | com23 | ⊢ ( ( 3  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( ( 3  ≤  𝑞  ∧  3  ≤  𝑝 )  →  ( 𝑝  ∈  ℤ  →  5  <  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 34 | 33 | exp4b | ⊢ ( 3  ∈  ℤ  →  ( 𝑞  ∈  ℤ  →  ( 3  ≤  𝑞  →  ( 3  ≤  𝑝  →  ( 𝑝  ∈  ℤ  →  5  <  ( 𝑝  +  𝑞 ) ) ) ) ) ) | 
						
							| 35 | 34 | 3imp | ⊢ ( ( 3  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  3  ≤  𝑞 )  →  ( 3  ≤  𝑝  →  ( 𝑝  ∈  ℤ  →  5  <  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 36 | 35 | com13 | ⊢ ( 𝑝  ∈  ℤ  →  ( 3  ≤  𝑝  →  ( ( 3  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  3  ≤  𝑞 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( 𝑝  ∈  ℤ  ∧  3  ≤  𝑝 )  →  ( ( 3  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  3  ≤  𝑞 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 38 | 37 | 3adant1 | ⊢ ( ( 3  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  3  ≤  𝑝 )  →  ( ( 3  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  3  ≤  𝑞 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 39 | 7 38 | biimtrid | ⊢ ( ( 3  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  3  ≤  𝑝 )  →  ( 𝑞  ∈  ( ℤ≥ ‘ 3 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 40 | 6 39 | sylbi | ⊢ ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  →  ( 𝑞  ∈  ( ℤ≥ ‘ 3 )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 41 | 40 | imp | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  →  5  <  ( 𝑝  +  𝑞 ) ) | 
						
							| 42 | 3 5 41 | syl2an | ⊢ ( ( ( 𝑝  ∈   Odd   ∧  𝑝  ∈  ℙ )  ∧  ( 𝑞  ∈   Odd   ∧  𝑞  ∈  ℙ ) )  →  5  <  ( 𝑝  +  𝑞 ) ) | 
						
							| 43 | 42 | an4s | ⊢ ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  →  5  <  ( 𝑝  +  𝑞 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  →  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 45 | 44 | 3adant3 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 46 | 45 | impcom | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) ) )  →  5  <  ( 𝑝  +  𝑞 ) ) | 
						
							| 47 |  | breq2 | ⊢ ( 𝑍  =  ( 𝑝  +  𝑞 )  →  ( 5  <  𝑍  ↔  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 48 | 47 | 3ad2ant3 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  ( 5  <  𝑍  ↔  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) ) )  →  ( 5  <  𝑍  ↔  5  <  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 50 | 46 49 | mpbird | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) ) )  →  5  <  𝑍 ) | 
						
							| 51 | 50 | ex | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  5  <  𝑍 ) ) | 
						
							| 52 | 51 | a1i | ⊢ ( 𝑍  ∈   Even   →  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  5  <  𝑍 ) ) ) | 
						
							| 53 | 52 | rexlimdvv | ⊢ ( 𝑍  ∈   Even   →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  5  <  𝑍 ) ) | 
						
							| 54 | 53 | imp | ⊢ ( ( 𝑍  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) ) )  →  5  <  𝑍 ) | 
						
							| 55 | 1 54 | sylbi | ⊢ ( 𝑍  ∈   GoldbachEven   →  5  <  𝑍 ) |