| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbe |  |-  ( Z e. GoldbachEven <-> ( Z e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) ) | 
						
							| 2 |  | oddprmuzge3 |  |-  ( ( p e. Prime /\ p e. Odd ) -> p e. ( ZZ>= ` 3 ) ) | 
						
							| 3 | 2 | ancoms |  |-  ( ( p e. Odd /\ p e. Prime ) -> p e. ( ZZ>= ` 3 ) ) | 
						
							| 4 |  | oddprmuzge3 |  |-  ( ( q e. Prime /\ q e. Odd ) -> q e. ( ZZ>= ` 3 ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( q e. Odd /\ q e. Prime ) -> q e. ( ZZ>= ` 3 ) ) | 
						
							| 6 |  | eluz2 |  |-  ( p e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ p e. ZZ /\ 3 <_ p ) ) | 
						
							| 7 |  | eluz2 |  |-  ( q e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) ) | 
						
							| 8 |  | zre |  |-  ( q e. ZZ -> q e. RR ) | 
						
							| 9 |  | zre |  |-  ( p e. ZZ -> p e. RR ) | 
						
							| 10 |  | 3re |  |-  3 e. RR | 
						
							| 11 | 10 10 | pm3.2i |  |-  ( 3 e. RR /\ 3 e. RR ) | 
						
							| 12 |  | pm3.22 |  |-  ( ( q e. RR /\ p e. RR ) -> ( p e. RR /\ q e. RR ) ) | 
						
							| 13 |  | le2add |  |-  ( ( ( 3 e. RR /\ 3 e. RR ) /\ ( p e. RR /\ q e. RR ) ) -> ( ( 3 <_ p /\ 3 <_ q ) -> ( 3 + 3 ) <_ ( p + q ) ) ) | 
						
							| 14 | 11 12 13 | sylancr |  |-  ( ( q e. RR /\ p e. RR ) -> ( ( 3 <_ p /\ 3 <_ q ) -> ( 3 + 3 ) <_ ( p + q ) ) ) | 
						
							| 15 | 14 | ancomsd |  |-  ( ( q e. RR /\ p e. RR ) -> ( ( 3 <_ q /\ 3 <_ p ) -> ( 3 + 3 ) <_ ( p + q ) ) ) | 
						
							| 16 |  | 3p3e6 |  |-  ( 3 + 3 ) = 6 | 
						
							| 17 | 16 | breq1i |  |-  ( ( 3 + 3 ) <_ ( p + q ) <-> 6 <_ ( p + q ) ) | 
						
							| 18 |  | 5lt6 |  |-  5 < 6 | 
						
							| 19 |  | 5re |  |-  5 e. RR | 
						
							| 20 | 19 | a1i |  |-  ( ( q e. RR /\ p e. RR ) -> 5 e. RR ) | 
						
							| 21 |  | 6re |  |-  6 e. RR | 
						
							| 22 | 21 | a1i |  |-  ( ( q e. RR /\ p e. RR ) -> 6 e. RR ) | 
						
							| 23 |  | readdcl |  |-  ( ( p e. RR /\ q e. RR ) -> ( p + q ) e. RR ) | 
						
							| 24 | 23 | ancoms |  |-  ( ( q e. RR /\ p e. RR ) -> ( p + q ) e. RR ) | 
						
							| 25 |  | ltletr |  |-  ( ( 5 e. RR /\ 6 e. RR /\ ( p + q ) e. RR ) -> ( ( 5 < 6 /\ 6 <_ ( p + q ) ) -> 5 < ( p + q ) ) ) | 
						
							| 26 | 20 22 24 25 | syl3anc |  |-  ( ( q e. RR /\ p e. RR ) -> ( ( 5 < 6 /\ 6 <_ ( p + q ) ) -> 5 < ( p + q ) ) ) | 
						
							| 27 | 18 26 | mpani |  |-  ( ( q e. RR /\ p e. RR ) -> ( 6 <_ ( p + q ) -> 5 < ( p + q ) ) ) | 
						
							| 28 | 17 27 | biimtrid |  |-  ( ( q e. RR /\ p e. RR ) -> ( ( 3 + 3 ) <_ ( p + q ) -> 5 < ( p + q ) ) ) | 
						
							| 29 | 15 28 | syld |  |-  ( ( q e. RR /\ p e. RR ) -> ( ( 3 <_ q /\ 3 <_ p ) -> 5 < ( p + q ) ) ) | 
						
							| 30 | 8 9 29 | syl2an |  |-  ( ( q e. ZZ /\ p e. ZZ ) -> ( ( 3 <_ q /\ 3 <_ p ) -> 5 < ( p + q ) ) ) | 
						
							| 31 | 30 | ex |  |-  ( q e. ZZ -> ( p e. ZZ -> ( ( 3 <_ q /\ 3 <_ p ) -> 5 < ( p + q ) ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( 3 e. ZZ /\ q e. ZZ ) -> ( p e. ZZ -> ( ( 3 <_ q /\ 3 <_ p ) -> 5 < ( p + q ) ) ) ) | 
						
							| 33 | 32 | com23 |  |-  ( ( 3 e. ZZ /\ q e. ZZ ) -> ( ( 3 <_ q /\ 3 <_ p ) -> ( p e. ZZ -> 5 < ( p + q ) ) ) ) | 
						
							| 34 | 33 | exp4b |  |-  ( 3 e. ZZ -> ( q e. ZZ -> ( 3 <_ q -> ( 3 <_ p -> ( p e. ZZ -> 5 < ( p + q ) ) ) ) ) ) | 
						
							| 35 | 34 | 3imp |  |-  ( ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) -> ( 3 <_ p -> ( p e. ZZ -> 5 < ( p + q ) ) ) ) | 
						
							| 36 | 35 | com13 |  |-  ( p e. ZZ -> ( 3 <_ p -> ( ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) -> 5 < ( p + q ) ) ) ) | 
						
							| 37 | 36 | imp |  |-  ( ( p e. ZZ /\ 3 <_ p ) -> ( ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) -> 5 < ( p + q ) ) ) | 
						
							| 38 | 37 | 3adant1 |  |-  ( ( 3 e. ZZ /\ p e. ZZ /\ 3 <_ p ) -> ( ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) -> 5 < ( p + q ) ) ) | 
						
							| 39 | 7 38 | biimtrid |  |-  ( ( 3 e. ZZ /\ p e. ZZ /\ 3 <_ p ) -> ( q e. ( ZZ>= ` 3 ) -> 5 < ( p + q ) ) ) | 
						
							| 40 | 6 39 | sylbi |  |-  ( p e. ( ZZ>= ` 3 ) -> ( q e. ( ZZ>= ` 3 ) -> 5 < ( p + q ) ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> 5 < ( p + q ) ) | 
						
							| 42 | 3 5 41 | syl2an |  |-  ( ( ( p e. Odd /\ p e. Prime ) /\ ( q e. Odd /\ q e. Prime ) ) -> 5 < ( p + q ) ) | 
						
							| 43 | 42 | an4s |  |-  ( ( ( p e. Odd /\ q e. Odd ) /\ ( p e. Prime /\ q e. Prime ) ) -> 5 < ( p + q ) ) | 
						
							| 44 | 43 | ex |  |-  ( ( p e. Odd /\ q e. Odd ) -> ( ( p e. Prime /\ q e. Prime ) -> 5 < ( p + q ) ) ) | 
						
							| 45 | 44 | 3adant3 |  |-  ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> ( ( p e. Prime /\ q e. Prime ) -> 5 < ( p + q ) ) ) | 
						
							| 46 | 45 | impcom |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> 5 < ( p + q ) ) | 
						
							| 47 |  | breq2 |  |-  ( Z = ( p + q ) -> ( 5 < Z <-> 5 < ( p + q ) ) ) | 
						
							| 48 | 47 | 3ad2ant3 |  |-  ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> ( 5 < Z <-> 5 < ( p + q ) ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> ( 5 < Z <-> 5 < ( p + q ) ) ) | 
						
							| 50 | 46 49 | mpbird |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> 5 < Z ) | 
						
							| 51 | 50 | ex |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> 5 < Z ) ) | 
						
							| 52 | 51 | a1i |  |-  ( Z e. Even -> ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> 5 < Z ) ) ) | 
						
							| 53 | 52 | rexlimdvv |  |-  ( Z e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> 5 < Z ) ) | 
						
							| 54 | 53 | imp |  |-  ( ( Z e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> 5 < Z ) | 
						
							| 55 | 1 54 | sylbi |  |-  ( Z e. GoldbachEven -> 5 < Z ) |