Step |
Hyp |
Ref |
Expression |
1 |
|
isgbe |
|- ( Z e. GoldbachEven <-> ( Z e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) ) |
2 |
|
oddprmuzge3 |
|- ( ( p e. Prime /\ p e. Odd ) -> p e. ( ZZ>= ` 3 ) ) |
3 |
2
|
ancoms |
|- ( ( p e. Odd /\ p e. Prime ) -> p e. ( ZZ>= ` 3 ) ) |
4 |
|
oddprmuzge3 |
|- ( ( q e. Prime /\ q e. Odd ) -> q e. ( ZZ>= ` 3 ) ) |
5 |
4
|
ancoms |
|- ( ( q e. Odd /\ q e. Prime ) -> q e. ( ZZ>= ` 3 ) ) |
6 |
|
eluz2 |
|- ( p e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ p e. ZZ /\ 3 <_ p ) ) |
7 |
|
eluz2 |
|- ( q e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) ) |
8 |
|
zre |
|- ( q e. ZZ -> q e. RR ) |
9 |
|
zre |
|- ( p e. ZZ -> p e. RR ) |
10 |
|
3re |
|- 3 e. RR |
11 |
10 10
|
pm3.2i |
|- ( 3 e. RR /\ 3 e. RR ) |
12 |
|
pm3.22 |
|- ( ( q e. RR /\ p e. RR ) -> ( p e. RR /\ q e. RR ) ) |
13 |
|
le2add |
|- ( ( ( 3 e. RR /\ 3 e. RR ) /\ ( p e. RR /\ q e. RR ) ) -> ( ( 3 <_ p /\ 3 <_ q ) -> ( 3 + 3 ) <_ ( p + q ) ) ) |
14 |
11 12 13
|
sylancr |
|- ( ( q e. RR /\ p e. RR ) -> ( ( 3 <_ p /\ 3 <_ q ) -> ( 3 + 3 ) <_ ( p + q ) ) ) |
15 |
14
|
ancomsd |
|- ( ( q e. RR /\ p e. RR ) -> ( ( 3 <_ q /\ 3 <_ p ) -> ( 3 + 3 ) <_ ( p + q ) ) ) |
16 |
|
3p3e6 |
|- ( 3 + 3 ) = 6 |
17 |
16
|
breq1i |
|- ( ( 3 + 3 ) <_ ( p + q ) <-> 6 <_ ( p + q ) ) |
18 |
|
5lt6 |
|- 5 < 6 |
19 |
|
5re |
|- 5 e. RR |
20 |
19
|
a1i |
|- ( ( q e. RR /\ p e. RR ) -> 5 e. RR ) |
21 |
|
6re |
|- 6 e. RR |
22 |
21
|
a1i |
|- ( ( q e. RR /\ p e. RR ) -> 6 e. RR ) |
23 |
|
readdcl |
|- ( ( p e. RR /\ q e. RR ) -> ( p + q ) e. RR ) |
24 |
23
|
ancoms |
|- ( ( q e. RR /\ p e. RR ) -> ( p + q ) e. RR ) |
25 |
|
ltletr |
|- ( ( 5 e. RR /\ 6 e. RR /\ ( p + q ) e. RR ) -> ( ( 5 < 6 /\ 6 <_ ( p + q ) ) -> 5 < ( p + q ) ) ) |
26 |
20 22 24 25
|
syl3anc |
|- ( ( q e. RR /\ p e. RR ) -> ( ( 5 < 6 /\ 6 <_ ( p + q ) ) -> 5 < ( p + q ) ) ) |
27 |
18 26
|
mpani |
|- ( ( q e. RR /\ p e. RR ) -> ( 6 <_ ( p + q ) -> 5 < ( p + q ) ) ) |
28 |
17 27
|
syl5bi |
|- ( ( q e. RR /\ p e. RR ) -> ( ( 3 + 3 ) <_ ( p + q ) -> 5 < ( p + q ) ) ) |
29 |
15 28
|
syld |
|- ( ( q e. RR /\ p e. RR ) -> ( ( 3 <_ q /\ 3 <_ p ) -> 5 < ( p + q ) ) ) |
30 |
8 9 29
|
syl2an |
|- ( ( q e. ZZ /\ p e. ZZ ) -> ( ( 3 <_ q /\ 3 <_ p ) -> 5 < ( p + q ) ) ) |
31 |
30
|
ex |
|- ( q e. ZZ -> ( p e. ZZ -> ( ( 3 <_ q /\ 3 <_ p ) -> 5 < ( p + q ) ) ) ) |
32 |
31
|
adantl |
|- ( ( 3 e. ZZ /\ q e. ZZ ) -> ( p e. ZZ -> ( ( 3 <_ q /\ 3 <_ p ) -> 5 < ( p + q ) ) ) ) |
33 |
32
|
com23 |
|- ( ( 3 e. ZZ /\ q e. ZZ ) -> ( ( 3 <_ q /\ 3 <_ p ) -> ( p e. ZZ -> 5 < ( p + q ) ) ) ) |
34 |
33
|
exp4b |
|- ( 3 e. ZZ -> ( q e. ZZ -> ( 3 <_ q -> ( 3 <_ p -> ( p e. ZZ -> 5 < ( p + q ) ) ) ) ) ) |
35 |
34
|
3imp |
|- ( ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) -> ( 3 <_ p -> ( p e. ZZ -> 5 < ( p + q ) ) ) ) |
36 |
35
|
com13 |
|- ( p e. ZZ -> ( 3 <_ p -> ( ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) -> 5 < ( p + q ) ) ) ) |
37 |
36
|
imp |
|- ( ( p e. ZZ /\ 3 <_ p ) -> ( ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) -> 5 < ( p + q ) ) ) |
38 |
37
|
3adant1 |
|- ( ( 3 e. ZZ /\ p e. ZZ /\ 3 <_ p ) -> ( ( 3 e. ZZ /\ q e. ZZ /\ 3 <_ q ) -> 5 < ( p + q ) ) ) |
39 |
7 38
|
syl5bi |
|- ( ( 3 e. ZZ /\ p e. ZZ /\ 3 <_ p ) -> ( q e. ( ZZ>= ` 3 ) -> 5 < ( p + q ) ) ) |
40 |
6 39
|
sylbi |
|- ( p e. ( ZZ>= ` 3 ) -> ( q e. ( ZZ>= ` 3 ) -> 5 < ( p + q ) ) ) |
41 |
40
|
imp |
|- ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> 5 < ( p + q ) ) |
42 |
3 5 41
|
syl2an |
|- ( ( ( p e. Odd /\ p e. Prime ) /\ ( q e. Odd /\ q e. Prime ) ) -> 5 < ( p + q ) ) |
43 |
42
|
an4s |
|- ( ( ( p e. Odd /\ q e. Odd ) /\ ( p e. Prime /\ q e. Prime ) ) -> 5 < ( p + q ) ) |
44 |
43
|
ex |
|- ( ( p e. Odd /\ q e. Odd ) -> ( ( p e. Prime /\ q e. Prime ) -> 5 < ( p + q ) ) ) |
45 |
44
|
3adant3 |
|- ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> ( ( p e. Prime /\ q e. Prime ) -> 5 < ( p + q ) ) ) |
46 |
45
|
impcom |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> 5 < ( p + q ) ) |
47 |
|
breq2 |
|- ( Z = ( p + q ) -> ( 5 < Z <-> 5 < ( p + q ) ) ) |
48 |
47
|
3ad2ant3 |
|- ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> ( 5 < Z <-> 5 < ( p + q ) ) ) |
49 |
48
|
adantl |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> ( 5 < Z <-> 5 < ( p + q ) ) ) |
50 |
46 49
|
mpbird |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> 5 < Z ) |
51 |
50
|
ex |
|- ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> 5 < Z ) ) |
52 |
51
|
a1i |
|- ( Z e. Even -> ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> 5 < Z ) ) ) |
53 |
52
|
rexlimdvv |
|- ( Z e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> 5 < Z ) ) |
54 |
53
|
imp |
|- ( ( Z e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> 5 < Z ) |
55 |
1 54
|
sylbi |
|- ( Z e. GoldbachEven -> 5 < Z ) |