| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbow | ⊢ ( 𝑍  ∈   GoldbachOddW   ↔  ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 2 |  | prmuz2 | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 |  | eluz2 | ⊢ ( 𝑝  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 ) ) | 
						
							| 4 | 2 3 | sylib | ⊢ ( 𝑝  ∈  ℙ  →  ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 ) ) | 
						
							| 5 |  | prmuz2 | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 6 |  | eluz2 | ⊢ ( 𝑞  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝑞  ∈  ℙ  →  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) ) | 
						
							| 8 | 4 7 | anim12i | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) ) ) | 
						
							| 9 |  | prmuz2 | ⊢ ( 𝑟  ∈  ℙ  →  𝑟  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 10 |  | eluz2 | ⊢ ( 𝑟  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝑟  ∈  ℙ  →  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) ) | 
						
							| 12 |  | zre | ⊢ ( 𝑝  ∈  ℤ  →  𝑝  ∈  ℝ ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  →  𝑝  ∈  ℝ ) | 
						
							| 14 |  | zre | ⊢ ( 𝑞  ∈  ℤ  →  𝑞  ∈  ℝ ) | 
						
							| 15 | 14 | 3ad2ant2 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 )  →  𝑞  ∈  ℝ ) | 
						
							| 16 | 13 15 | anim12i | ⊢ ( ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) )  →  ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ ) ) | 
						
							| 17 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 18 | 17 17 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  2  ∈  ℝ ) | 
						
							| 19 | 16 18 | jctil | ⊢ ( ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) )  →  ( ( 2  ∈  ℝ  ∧  2  ∈  ℝ )  ∧  ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ ) ) ) | 
						
							| 20 |  | simp3 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  →  2  ≤  𝑝 ) | 
						
							| 21 |  | simp3 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 )  →  2  ≤  𝑞 ) | 
						
							| 22 | 20 21 | anim12i | ⊢ ( ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) )  →  ( 2  ≤  𝑝  ∧  2  ≤  𝑞 ) ) | 
						
							| 23 |  | le2add | ⊢ ( ( ( 2  ∈  ℝ  ∧  2  ∈  ℝ )  ∧  ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ ) )  →  ( ( 2  ≤  𝑝  ∧  2  ≤  𝑞 )  →  ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 24 | 19 22 23 | sylc | ⊢ ( ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) )  →  ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 ) ) | 
						
							| 25 |  | 2p2e4 | ⊢ ( 2  +  2 )  =  4 | 
						
							| 26 | 25 | breq1i | ⊢ ( ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 )  ↔  4  ≤  ( 𝑝  +  𝑞 ) ) | 
						
							| 27 |  | zaddcl | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( 𝑝  +  𝑞 )  ∈  ℤ ) | 
						
							| 28 | 27 | zred | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( 𝑝  +  𝑞 )  ∈  ℝ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  →  ( 𝑝  +  𝑞 )  ∈  ℝ ) | 
						
							| 30 |  | zre | ⊢ ( 𝑟  ∈  ℤ  →  𝑟  ∈  ℝ ) | 
						
							| 31 | 30 | 3ad2ant2 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  𝑟  ∈  ℝ ) | 
						
							| 32 | 29 31 | anim12i | ⊢ ( ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  ∧  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) )  →  ( ( 𝑝  +  𝑞 )  ∈  ℝ  ∧  𝑟  ∈  ℝ ) ) | 
						
							| 33 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 34 | 33 17 | pm3.2i | ⊢ ( 4  ∈  ℝ  ∧  2  ∈  ℝ ) | 
						
							| 35 | 32 34 | jctil | ⊢ ( ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  ∧  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) )  →  ( ( 4  ∈  ℝ  ∧  2  ∈  ℝ )  ∧  ( ( 𝑝  +  𝑞 )  ∈  ℝ  ∧  𝑟  ∈  ℝ ) ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  →  4  ≤  ( 𝑝  +  𝑞 ) ) | 
						
							| 37 |  | simp3 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  2  ≤  𝑟 ) | 
						
							| 38 | 36 37 | anim12i | ⊢ ( ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  ∧  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) )  →  ( 4  ≤  ( 𝑝  +  𝑞 )  ∧  2  ≤  𝑟 ) ) | 
						
							| 39 |  | le2add | ⊢ ( ( ( 4  ∈  ℝ  ∧  2  ∈  ℝ )  ∧  ( ( 𝑝  +  𝑞 )  ∈  ℝ  ∧  𝑟  ∈  ℝ ) )  →  ( ( 4  ≤  ( 𝑝  +  𝑞 )  ∧  2  ≤  𝑟 )  →  ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 40 | 35 38 39 | sylc | ⊢ ( ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  ∧  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) )  →  ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 41 |  | 4p2e6 | ⊢ ( 4  +  2 )  =  6 | 
						
							| 42 | 41 | breq1i | ⊢ ( ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  6  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 43 |  | 5lt6 | ⊢ 5  <  6 | 
						
							| 44 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 45 | 44 | a1i | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  5  ∈  ℝ ) | 
						
							| 46 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 47 | 46 | a1i | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  6  ∈  ℝ ) | 
						
							| 48 | 27 | adantr | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  ( 𝑝  +  𝑞 )  ∈  ℤ ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  𝑟  ∈  ℤ ) | 
						
							| 50 | 48 49 | zaddcld | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ∈  ℤ ) | 
						
							| 51 | 50 | zred | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ∈  ℝ ) | 
						
							| 52 |  | ltletr | ⊢ ( ( 5  ∈  ℝ  ∧  6  ∈  ℝ  ∧  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ∈  ℝ )  →  ( ( 5  <  6  ∧  6  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 53 | 45 47 51 52 | syl3anc | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  ( ( 5  <  6  ∧  6  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 54 | 43 53 | mpani | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  ( 6  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 55 | 42 54 | biimtrid | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  𝑟  ∈  ℤ )  →  ( ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 56 | 55 | expcom | ⊢ ( 𝑟  ∈  ℤ  →  ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 57 | 56 | 3ad2ant2 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 58 | 57 | com12 | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  ( ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  ( ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 60 | 59 | imp | ⊢ ( ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  ∧  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) )  →  ( ( 4  +  2 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 61 | 40 60 | mpd | ⊢ ( ( ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  ∧  4  ≤  ( 𝑝  +  𝑞 ) )  ∧  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 62 | 61 | exp31 | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( 4  ≤  ( 𝑝  +  𝑞 )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 63 | 26 62 | biimtrid | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 64 | 63 | expcom | ⊢ ( 𝑞  ∈  ℤ  →  ( 𝑝  ∈  ℤ  →  ( ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 65 | 64 | 3ad2ant2 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 )  →  ( 𝑝  ∈  ℤ  →  ( ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 66 | 65 | com12 | ⊢ ( 𝑝  ∈  ℤ  →  ( ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 )  →  ( ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 67 | 66 | 3ad2ant2 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  →  ( ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 )  →  ( ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 68 | 67 | imp | ⊢ ( ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) )  →  ( ( 2  +  2 )  ≤  ( 𝑝  +  𝑞 )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 69 | 24 68 | mpd | ⊢ ( ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) )  →  ( ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 70 | 69 | imp | ⊢ ( ( ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) )  ∧  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) )  →  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 71 |  | breq2 | ⊢ ( 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ( 5  <  𝑍  ↔  5  <  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 72 | 70 71 | syl5ibrcom | ⊢ ( ( ( ( 2  ∈  ℤ  ∧  𝑝  ∈  ℤ  ∧  2  ≤  𝑝 )  ∧  ( 2  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  2  ≤  𝑞 ) )  ∧  ( 2  ∈  ℤ  ∧  𝑟  ∈  ℤ  ∧  2  ≤  𝑟 ) )  →  ( 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  𝑍 ) ) | 
						
							| 73 | 8 11 72 | syl2an | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  →  ( 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  𝑍 ) ) | 
						
							| 74 | 73 | rexlimdva | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  𝑍 ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝑍  ∈   Odd   ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  →  ( ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  𝑍 ) ) | 
						
							| 76 | 75 | rexlimdvva | ⊢ ( 𝑍  ∈   Odd   →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  5  <  𝑍 ) ) | 
						
							| 77 | 76 | imp | ⊢ ( ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  5  <  𝑍 ) | 
						
							| 78 | 1 77 | sylbi | ⊢ ( 𝑍  ∈   GoldbachOddW   →  5  <  𝑍 ) |