| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gbowgt5 | ⊢ ( 𝑍  ∈   GoldbachOddW   →  5  <  𝑍 ) | 
						
							| 2 |  | gbowpos | ⊢ ( 𝑍  ∈   GoldbachOddW   →  𝑍  ∈  ℕ ) | 
						
							| 3 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 4 | 3 | nnzi | ⊢ 5  ∈  ℤ | 
						
							| 5 |  | nnz | ⊢ ( 𝑍  ∈  ℕ  →  𝑍  ∈  ℤ ) | 
						
							| 6 |  | zltp1le | ⊢ ( ( 5  ∈  ℤ  ∧  𝑍  ∈  ℤ )  →  ( 5  <  𝑍  ↔  ( 5  +  1 )  ≤  𝑍 ) ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝑍  ∈  ℕ  →  ( 5  <  𝑍  ↔  ( 5  +  1 )  ≤  𝑍 ) ) | 
						
							| 8 | 7 | biimpd | ⊢ ( 𝑍  ∈  ℕ  →  ( 5  <  𝑍  →  ( 5  +  1 )  ≤  𝑍 ) ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( 5  <  𝑍  →  ( 5  +  1 )  ≤  𝑍 ) ) | 
						
							| 10 |  | 5p1e6 | ⊢ ( 5  +  1 )  =  6 | 
						
							| 11 | 10 | breq1i | ⊢ ( ( 5  +  1 )  ≤  𝑍  ↔  6  ≤  𝑍 ) | 
						
							| 12 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 13 | 2 | nnred | ⊢ ( 𝑍  ∈   GoldbachOddW   →  𝑍  ∈  ℝ ) | 
						
							| 14 |  | leloe | ⊢ ( ( 6  ∈  ℝ  ∧  𝑍  ∈  ℝ )  →  ( 6  ≤  𝑍  ↔  ( 6  <  𝑍  ∨  6  =  𝑍 ) ) ) | 
						
							| 15 | 12 13 14 | sylancr | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( 6  ≤  𝑍  ↔  ( 6  <  𝑍  ∨  6  =  𝑍 ) ) ) | 
						
							| 16 | 11 15 | bitrid | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( ( 5  +  1 )  ≤  𝑍  ↔  ( 6  <  𝑍  ∨  6  =  𝑍 ) ) ) | 
						
							| 17 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 18 | 17 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 19 | 2 | nnzd | ⊢ ( 𝑍  ∈   GoldbachOddW   →  𝑍  ∈  ℤ ) | 
						
							| 20 |  | zltp1le | ⊢ ( ( 6  ∈  ℤ  ∧  𝑍  ∈  ℤ )  →  ( 6  <  𝑍  ↔  ( 6  +  1 )  ≤  𝑍 ) ) | 
						
							| 21 | 20 | biimpd | ⊢ ( ( 6  ∈  ℤ  ∧  𝑍  ∈  ℤ )  →  ( 6  <  𝑍  →  ( 6  +  1 )  ≤  𝑍 ) ) | 
						
							| 22 | 18 19 21 | sylancr | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( 6  <  𝑍  →  ( 6  +  1 )  ≤  𝑍 ) ) | 
						
							| 23 |  | 6p1e7 | ⊢ ( 6  +  1 )  =  7 | 
						
							| 24 | 23 | breq1i | ⊢ ( ( 6  +  1 )  ≤  𝑍  ↔  7  ≤  𝑍 ) | 
						
							| 25 | 22 24 | imbitrdi | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( 6  <  𝑍  →  7  ≤  𝑍 ) ) | 
						
							| 26 |  | isgbow | ⊢ ( 𝑍  ∈   GoldbachOddW   ↔  ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 27 |  | eleq1 | ⊢ ( 6  =  𝑍  →  ( 6  ∈   Odd   ↔  𝑍  ∈   Odd  ) ) | 
						
							| 28 |  | 6even | ⊢ 6  ∈   Even | 
						
							| 29 |  | evennodd | ⊢ ( 6  ∈   Even   →  ¬  6  ∈   Odd  ) | 
						
							| 30 |  | pm2.21 | ⊢ ( ¬  6  ∈   Odd   →  ( 6  ∈   Odd   →  7  ≤  𝑍 ) ) | 
						
							| 31 | 28 29 30 | mp2b | ⊢ ( 6  ∈   Odd   →  7  ≤  𝑍 ) | 
						
							| 32 | 27 31 | biimtrrdi | ⊢ ( 6  =  𝑍  →  ( 𝑍  ∈   Odd   →  7  ≤  𝑍 ) ) | 
						
							| 33 | 32 | com12 | ⊢ ( 𝑍  ∈   Odd   →  ( 6  =  𝑍  →  7  ≤  𝑍 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ( 6  =  𝑍  →  7  ≤  𝑍 ) ) | 
						
							| 35 | 26 34 | sylbi | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( 6  =  𝑍  →  7  ≤  𝑍 ) ) | 
						
							| 36 | 25 35 | jaod | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( ( 6  <  𝑍  ∨  6  =  𝑍 )  →  7  ≤  𝑍 ) ) | 
						
							| 37 | 16 36 | sylbid | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( ( 5  +  1 )  ≤  𝑍  →  7  ≤  𝑍 ) ) | 
						
							| 38 | 9 37 | syld | ⊢ ( 𝑍  ∈   GoldbachOddW   →  ( 5  <  𝑍  →  7  ≤  𝑍 ) ) | 
						
							| 39 | 1 38 | mpd | ⊢ ( 𝑍  ∈   GoldbachOddW   →  7  ≤  𝑍 ) |