| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbo | ⊢ ( 𝑍  ∈   GoldbachOdd   ↔  ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 2 |  | df-3an | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ  ∧  𝑟  ∈  ℙ )  ↔  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ ) ) | 
						
							| 3 |  | an6 | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ  ∧  𝑟  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  ) )  ↔  ( ( 𝑝  ∈  ℙ  ∧  𝑝  ∈   Odd  )  ∧  ( 𝑞  ∈  ℙ  ∧  𝑞  ∈   Odd  )  ∧  ( 𝑟  ∈  ℙ  ∧  𝑟  ∈   Odd  ) ) ) | 
						
							| 4 |  | oddprmuzge3 | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑝  ∈   Odd  )  →  𝑝  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 5 |  | oddprmuzge3 | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑞  ∈   Odd  )  →  𝑞  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 6 |  | oddprmuzge3 | ⊢ ( ( 𝑟  ∈  ℙ  ∧  𝑟  ∈   Odd  )  →  𝑟  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 7 |  | 6p3e9 | ⊢ ( 6  +  3 )  =  9 | 
						
							| 8 |  | eluzelz | ⊢ ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  →  𝑝  ∈  ℤ ) | 
						
							| 9 |  | eluzelz | ⊢ ( 𝑞  ∈  ( ℤ≥ ‘ 3 )  →  𝑞  ∈  ℤ ) | 
						
							| 10 |  | zaddcl | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( 𝑝  +  𝑞 )  ∈  ℤ ) | 
						
							| 11 | 8 9 10 | syl2an | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝑝  +  𝑞 )  ∈  ℤ ) | 
						
							| 12 | 11 | zred | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝑝  +  𝑞 )  ∈  ℝ ) | 
						
							| 13 |  | eluzelre | ⊢ ( 𝑟  ∈  ( ℤ≥ ‘ 3 )  →  𝑟  ∈  ℝ ) | 
						
							| 14 | 12 13 | anim12i | ⊢ ( ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  ∧  𝑟  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝑝  +  𝑞 )  ∈  ℝ  ∧  𝑟  ∈  ℝ ) ) | 
						
							| 15 | 14 | 3impa | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑟  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝑝  +  𝑞 )  ∈  ℝ  ∧  𝑟  ∈  ℝ ) ) | 
						
							| 16 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 17 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 18 | 16 17 | pm3.2i | ⊢ ( 6  ∈  ℝ  ∧  3  ∈  ℝ ) | 
						
							| 19 | 15 18 | jctil | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑟  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 6  ∈  ℝ  ∧  3  ∈  ℝ )  ∧  ( ( 𝑝  +  𝑞 )  ∈  ℝ  ∧  𝑟  ∈  ℝ ) ) ) | 
						
							| 20 |  | 3p3e6 | ⊢ ( 3  +  3 )  =  6 | 
						
							| 21 |  | eluzelre | ⊢ ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  →  𝑝  ∈  ℝ ) | 
						
							| 22 |  | eluzelre | ⊢ ( 𝑞  ∈  ( ℤ≥ ‘ 3 )  →  𝑞  ∈  ℝ ) | 
						
							| 23 | 21 22 | anim12i | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ ) ) | 
						
							| 24 | 17 17 | pm3.2i | ⊢ ( 3  ∈  ℝ  ∧  3  ∈  ℝ ) | 
						
							| 25 | 23 24 | jctil | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 3  ∈  ℝ  ∧  3  ∈  ℝ )  ∧  ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ ) ) ) | 
						
							| 26 |  | eluzle | ⊢ ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑝 ) | 
						
							| 27 |  | eluzle | ⊢ ( 𝑞  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑞 ) | 
						
							| 28 | 26 27 | anim12i | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 3  ≤  𝑝  ∧  3  ≤  𝑞 ) ) | 
						
							| 29 |  | le2add | ⊢ ( ( ( 3  ∈  ℝ  ∧  3  ∈  ℝ )  ∧  ( 𝑝  ∈  ℝ  ∧  𝑞  ∈  ℝ ) )  →  ( ( 3  ≤  𝑝  ∧  3  ≤  𝑞 )  →  ( 3  +  3 )  ≤  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 30 | 25 28 29 | sylc | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 3  +  3 )  ≤  ( 𝑝  +  𝑞 ) ) | 
						
							| 31 | 20 30 | eqbrtrrid | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 ) )  →  6  ≤  ( 𝑝  +  𝑞 ) ) | 
						
							| 32 | 31 | 3adant3 | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑟  ∈  ( ℤ≥ ‘ 3 ) )  →  6  ≤  ( 𝑝  +  𝑞 ) ) | 
						
							| 33 |  | eluzle | ⊢ ( 𝑟  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑟 ) | 
						
							| 34 | 33 | 3ad2ant3 | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑟  ∈  ( ℤ≥ ‘ 3 ) )  →  3  ≤  𝑟 ) | 
						
							| 35 | 32 34 | jca | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑟  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 6  ≤  ( 𝑝  +  𝑞 )  ∧  3  ≤  𝑟 ) ) | 
						
							| 36 |  | le2add | ⊢ ( ( ( 6  ∈  ℝ  ∧  3  ∈  ℝ )  ∧  ( ( 𝑝  +  𝑞 )  ∈  ℝ  ∧  𝑟  ∈  ℝ ) )  →  ( ( 6  ≤  ( 𝑝  +  𝑞 )  ∧  3  ≤  𝑟 )  →  ( 6  +  3 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 37 | 19 35 36 | sylc | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑟  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 6  +  3 )  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 38 | 7 37 | eqbrtrrid | ⊢ ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑞  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑟  ∈  ( ℤ≥ ‘ 3 ) )  →  9  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 39 | 4 5 6 38 | syl3an | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑝  ∈   Odd  )  ∧  ( 𝑞  ∈  ℙ  ∧  𝑞  ∈   Odd  )  ∧  ( 𝑟  ∈  ℙ  ∧  𝑟  ∈   Odd  ) )  →  9  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 40 | 3 39 | sylbi | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ  ∧  𝑟  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  ) )  →  9  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 41 | 2 40 | sylanbr | ⊢ ( ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  ) )  →  9  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 42 |  | breq2 | ⊢ ( 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ( 9  ≤  𝑍  ↔  9  ≤  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 43 | 41 42 | syl5ibrcom | ⊢ ( ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  ) )  →  ( 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  9  ≤  𝑍 ) ) | 
						
							| 44 | 43 | expimpd | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  →  ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  9  ≤  𝑍 ) ) | 
						
							| 45 | 44 | rexlimdva | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  9  ≤  𝑍 ) ) | 
						
							| 46 | 45 | a1i | ⊢ ( 𝑍  ∈   Odd   →  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  9  ≤  𝑍 ) ) ) | 
						
							| 47 | 46 | rexlimdvv | ⊢ ( 𝑍  ∈   Odd   →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  9  ≤  𝑍 ) ) | 
						
							| 48 | 47 | imp | ⊢ ( ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  →  9  ≤  𝑍 ) | 
						
							| 49 | 1 48 | sylbi | ⊢ ( 𝑍  ∈   GoldbachOdd   →  9  ≤  𝑍 ) |