| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbo |  |-  ( Z e. GoldbachOdd <-> ( Z e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) ) ) | 
						
							| 2 |  | df-3an |  |-  ( ( p e. Prime /\ q e. Prime /\ r e. Prime ) <-> ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) ) | 
						
							| 3 |  | an6 |  |-  ( ( ( p e. Prime /\ q e. Prime /\ r e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ r e. Odd ) ) <-> ( ( p e. Prime /\ p e. Odd ) /\ ( q e. Prime /\ q e. Odd ) /\ ( r e. Prime /\ r e. Odd ) ) ) | 
						
							| 4 |  | oddprmuzge3 |  |-  ( ( p e. Prime /\ p e. Odd ) -> p e. ( ZZ>= ` 3 ) ) | 
						
							| 5 |  | oddprmuzge3 |  |-  ( ( q e. Prime /\ q e. Odd ) -> q e. ( ZZ>= ` 3 ) ) | 
						
							| 6 |  | oddprmuzge3 |  |-  ( ( r e. Prime /\ r e. Odd ) -> r e. ( ZZ>= ` 3 ) ) | 
						
							| 7 |  | 6p3e9 |  |-  ( 6 + 3 ) = 9 | 
						
							| 8 |  | eluzelz |  |-  ( p e. ( ZZ>= ` 3 ) -> p e. ZZ ) | 
						
							| 9 |  | eluzelz |  |-  ( q e. ( ZZ>= ` 3 ) -> q e. ZZ ) | 
						
							| 10 |  | zaddcl |  |-  ( ( p e. ZZ /\ q e. ZZ ) -> ( p + q ) e. ZZ ) | 
						
							| 11 | 8 9 10 | syl2an |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> ( p + q ) e. ZZ ) | 
						
							| 12 | 11 | zred |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> ( p + q ) e. RR ) | 
						
							| 13 |  | eluzelre |  |-  ( r e. ( ZZ>= ` 3 ) -> r e. RR ) | 
						
							| 14 | 12 13 | anim12i |  |-  ( ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) /\ r e. ( ZZ>= ` 3 ) ) -> ( ( p + q ) e. RR /\ r e. RR ) ) | 
						
							| 15 | 14 | 3impa |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) /\ r e. ( ZZ>= ` 3 ) ) -> ( ( p + q ) e. RR /\ r e. RR ) ) | 
						
							| 16 |  | 6re |  |-  6 e. RR | 
						
							| 17 |  | 3re |  |-  3 e. RR | 
						
							| 18 | 16 17 | pm3.2i |  |-  ( 6 e. RR /\ 3 e. RR ) | 
						
							| 19 | 15 18 | jctil |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) /\ r e. ( ZZ>= ` 3 ) ) -> ( ( 6 e. RR /\ 3 e. RR ) /\ ( ( p + q ) e. RR /\ r e. RR ) ) ) | 
						
							| 20 |  | 3p3e6 |  |-  ( 3 + 3 ) = 6 | 
						
							| 21 |  | eluzelre |  |-  ( p e. ( ZZ>= ` 3 ) -> p e. RR ) | 
						
							| 22 |  | eluzelre |  |-  ( q e. ( ZZ>= ` 3 ) -> q e. RR ) | 
						
							| 23 | 21 22 | anim12i |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> ( p e. RR /\ q e. RR ) ) | 
						
							| 24 | 17 17 | pm3.2i |  |-  ( 3 e. RR /\ 3 e. RR ) | 
						
							| 25 | 23 24 | jctil |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> ( ( 3 e. RR /\ 3 e. RR ) /\ ( p e. RR /\ q e. RR ) ) ) | 
						
							| 26 |  | eluzle |  |-  ( p e. ( ZZ>= ` 3 ) -> 3 <_ p ) | 
						
							| 27 |  | eluzle |  |-  ( q e. ( ZZ>= ` 3 ) -> 3 <_ q ) | 
						
							| 28 | 26 27 | anim12i |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> ( 3 <_ p /\ 3 <_ q ) ) | 
						
							| 29 |  | le2add |  |-  ( ( ( 3 e. RR /\ 3 e. RR ) /\ ( p e. RR /\ q e. RR ) ) -> ( ( 3 <_ p /\ 3 <_ q ) -> ( 3 + 3 ) <_ ( p + q ) ) ) | 
						
							| 30 | 25 28 29 | sylc |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> ( 3 + 3 ) <_ ( p + q ) ) | 
						
							| 31 | 20 30 | eqbrtrrid |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) ) -> 6 <_ ( p + q ) ) | 
						
							| 32 | 31 | 3adant3 |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) /\ r e. ( ZZ>= ` 3 ) ) -> 6 <_ ( p + q ) ) | 
						
							| 33 |  | eluzle |  |-  ( r e. ( ZZ>= ` 3 ) -> 3 <_ r ) | 
						
							| 34 | 33 | 3ad2ant3 |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) /\ r e. ( ZZ>= ` 3 ) ) -> 3 <_ r ) | 
						
							| 35 | 32 34 | jca |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) /\ r e. ( ZZ>= ` 3 ) ) -> ( 6 <_ ( p + q ) /\ 3 <_ r ) ) | 
						
							| 36 |  | le2add |  |-  ( ( ( 6 e. RR /\ 3 e. RR ) /\ ( ( p + q ) e. RR /\ r e. RR ) ) -> ( ( 6 <_ ( p + q ) /\ 3 <_ r ) -> ( 6 + 3 ) <_ ( ( p + q ) + r ) ) ) | 
						
							| 37 | 19 35 36 | sylc |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) /\ r e. ( ZZ>= ` 3 ) ) -> ( 6 + 3 ) <_ ( ( p + q ) + r ) ) | 
						
							| 38 | 7 37 | eqbrtrrid |  |-  ( ( p e. ( ZZ>= ` 3 ) /\ q e. ( ZZ>= ` 3 ) /\ r e. ( ZZ>= ` 3 ) ) -> 9 <_ ( ( p + q ) + r ) ) | 
						
							| 39 | 4 5 6 38 | syl3an |  |-  ( ( ( p e. Prime /\ p e. Odd ) /\ ( q e. Prime /\ q e. Odd ) /\ ( r e. Prime /\ r e. Odd ) ) -> 9 <_ ( ( p + q ) + r ) ) | 
						
							| 40 | 3 39 | sylbi |  |-  ( ( ( p e. Prime /\ q e. Prime /\ r e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ r e. Odd ) ) -> 9 <_ ( ( p + q ) + r ) ) | 
						
							| 41 | 2 40 | sylanbr |  |-  ( ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ r e. Odd ) ) -> 9 <_ ( ( p + q ) + r ) ) | 
						
							| 42 |  | breq2 |  |-  ( Z = ( ( p + q ) + r ) -> ( 9 <_ Z <-> 9 <_ ( ( p + q ) + r ) ) ) | 
						
							| 43 | 41 42 | syl5ibrcom |  |-  ( ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ r e. Odd ) ) -> ( Z = ( ( p + q ) + r ) -> 9 <_ Z ) ) | 
						
							| 44 | 43 | expimpd |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) -> 9 <_ Z ) ) | 
						
							| 45 | 44 | rexlimdva |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) -> 9 <_ Z ) ) | 
						
							| 46 | 45 | a1i |  |-  ( Z e. Odd -> ( ( p e. Prime /\ q e. Prime ) -> ( E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) -> 9 <_ Z ) ) ) | 
						
							| 47 | 46 | rexlimdvv |  |-  ( Z e. Odd -> ( E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) -> 9 <_ Z ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( Z e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) ) -> 9 <_ Z ) | 
						
							| 49 | 1 48 | sylbi |  |-  ( Z e. GoldbachOdd -> 9 <_ Z ) |