| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gbepos |
|- ( Z e. GoldbachEven -> Z e. NN ) |
| 2 |
|
gbegt5 |
|- ( Z e. GoldbachEven -> 5 < Z ) |
| 3 |
|
5nn |
|- 5 e. NN |
| 4 |
3
|
nnzi |
|- 5 e. ZZ |
| 5 |
|
nnz |
|- ( Z e. NN -> Z e. ZZ ) |
| 6 |
|
zltp1le |
|- ( ( 5 e. ZZ /\ Z e. ZZ ) -> ( 5 < Z <-> ( 5 + 1 ) <_ Z ) ) |
| 7 |
4 5 6
|
sylancr |
|- ( Z e. NN -> ( 5 < Z <-> ( 5 + 1 ) <_ Z ) ) |
| 8 |
7
|
biimpd |
|- ( Z e. NN -> ( 5 < Z -> ( 5 + 1 ) <_ Z ) ) |
| 9 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
| 10 |
9
|
breq1i |
|- ( ( 5 + 1 ) <_ Z <-> 6 <_ Z ) |
| 11 |
8 10
|
imbitrdi |
|- ( Z e. NN -> ( 5 < Z -> 6 <_ Z ) ) |
| 12 |
1 2 11
|
sylc |
|- ( Z e. GoldbachEven -> 6 <_ Z ) |