| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gbepos |  |-  ( Z e. GoldbachEven -> Z e. NN ) | 
						
							| 2 |  | gbegt5 |  |-  ( Z e. GoldbachEven -> 5 < Z ) | 
						
							| 3 |  | 5nn |  |-  5 e. NN | 
						
							| 4 | 3 | nnzi |  |-  5 e. ZZ | 
						
							| 5 |  | nnz |  |-  ( Z e. NN -> Z e. ZZ ) | 
						
							| 6 |  | zltp1le |  |-  ( ( 5 e. ZZ /\ Z e. ZZ ) -> ( 5 < Z <-> ( 5 + 1 ) <_ Z ) ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( Z e. NN -> ( 5 < Z <-> ( 5 + 1 ) <_ Z ) ) | 
						
							| 8 | 7 | biimpd |  |-  ( Z e. NN -> ( 5 < Z -> ( 5 + 1 ) <_ Z ) ) | 
						
							| 9 |  | 5p1e6 |  |-  ( 5 + 1 ) = 6 | 
						
							| 10 | 9 | breq1i |  |-  ( ( 5 + 1 ) <_ Z <-> 6 <_ Z ) | 
						
							| 11 | 8 10 | imbitrdi |  |-  ( Z e. NN -> ( 5 < Z -> 6 <_ Z ) ) | 
						
							| 12 | 1 2 11 | sylc |  |-  ( Z e. GoldbachEven -> 6 <_ Z ) |