| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6even |  |-  6 e. Even | 
						
							| 2 |  | 3prm |  |-  3 e. Prime | 
						
							| 3 |  | 3odd |  |-  3 e. Odd | 
						
							| 4 |  | gbpart6 |  |-  6 = ( 3 + 3 ) | 
						
							| 5 | 3 3 4 | 3pm3.2i |  |-  ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) ) | 
						
							| 6 |  | eleq1 |  |-  ( p = 3 -> ( p e. Odd <-> 3 e. Odd ) ) | 
						
							| 7 |  | biidd |  |-  ( p = 3 -> ( q e. Odd <-> q e. Odd ) ) | 
						
							| 8 |  | oveq1 |  |-  ( p = 3 -> ( p + q ) = ( 3 + q ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( p = 3 -> ( 6 = ( p + q ) <-> 6 = ( 3 + q ) ) ) | 
						
							| 10 | 6 7 9 | 3anbi123d |  |-  ( p = 3 -> ( ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) <-> ( 3 e. Odd /\ q e. Odd /\ 6 = ( 3 + q ) ) ) ) | 
						
							| 11 |  | biidd |  |-  ( q = 3 -> ( 3 e. Odd <-> 3 e. Odd ) ) | 
						
							| 12 |  | eleq1 |  |-  ( q = 3 -> ( q e. Odd <-> 3 e. Odd ) ) | 
						
							| 13 |  | oveq2 |  |-  ( q = 3 -> ( 3 + q ) = ( 3 + 3 ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( q = 3 -> ( 6 = ( 3 + q ) <-> 6 = ( 3 + 3 ) ) ) | 
						
							| 15 | 11 12 14 | 3anbi123d |  |-  ( q = 3 -> ( ( 3 e. Odd /\ q e. Odd /\ 6 = ( 3 + q ) ) <-> ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) ) ) ) | 
						
							| 16 | 10 15 | rspc2ev |  |-  ( ( 3 e. Prime /\ 3 e. Prime /\ ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) ) ) -> E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) ) | 
						
							| 17 | 2 2 5 16 | mp3an |  |-  E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) | 
						
							| 18 |  | isgbe |  |-  ( 6 e. GoldbachEven <-> ( 6 e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) ) ) | 
						
							| 19 | 1 17 18 | mpbir2an |  |-  6 e. GoldbachEven |