| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6even | ⊢ 6  ∈   Even | 
						
							| 2 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 3 |  | 3odd | ⊢ 3  ∈   Odd | 
						
							| 4 |  | gbpart6 | ⊢ 6  =  ( 3  +  3 ) | 
						
							| 5 | 3 3 4 | 3pm3.2i | ⊢ ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  6  =  ( 3  +  3 ) ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑝  =  3  →  ( 𝑝  ∈   Odd   ↔  3  ∈   Odd  ) ) | 
						
							| 7 |  | biidd | ⊢ ( 𝑝  =  3  →  ( 𝑞  ∈   Odd   ↔  𝑞  ∈   Odd  ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑝  =  3  →  ( 𝑝  +  𝑞 )  =  ( 3  +  𝑞 ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑝  =  3  →  ( 6  =  ( 𝑝  +  𝑞 )  ↔  6  =  ( 3  +  𝑞 ) ) ) | 
						
							| 10 | 6 7 9 | 3anbi123d | ⊢ ( 𝑝  =  3  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  6  =  ( 𝑝  +  𝑞 ) )  ↔  ( 3  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  6  =  ( 3  +  𝑞 ) ) ) ) | 
						
							| 11 |  | biidd | ⊢ ( 𝑞  =  3  →  ( 3  ∈   Odd   ↔  3  ∈   Odd  ) ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑞  =  3  →  ( 𝑞  ∈   Odd   ↔  3  ∈   Odd  ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑞  =  3  →  ( 3  +  𝑞 )  =  ( 3  +  3 ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑞  =  3  →  ( 6  =  ( 3  +  𝑞 )  ↔  6  =  ( 3  +  3 ) ) ) | 
						
							| 15 | 11 12 14 | 3anbi123d | ⊢ ( 𝑞  =  3  →  ( ( 3  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  6  =  ( 3  +  𝑞 ) )  ↔  ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  6  =  ( 3  +  3 ) ) ) ) | 
						
							| 16 | 10 15 | rspc2ev | ⊢ ( ( 3  ∈  ℙ  ∧  3  ∈  ℙ  ∧  ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  6  =  ( 3  +  3 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  6  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 17 | 2 2 5 16 | mp3an | ⊢ ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  6  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 18 |  | isgbe | ⊢ ( 6  ∈   GoldbachEven   ↔  ( 6  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  6  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 19 | 1 17 18 | mpbir2an | ⊢ 6  ∈   GoldbachEven |