| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gbowgt5 |  |-  ( Z e. GoldbachOddW -> 5 < Z ) | 
						
							| 2 |  | gbowpos |  |-  ( Z e. GoldbachOddW -> Z e. NN ) | 
						
							| 3 |  | 5nn |  |-  5 e. NN | 
						
							| 4 | 3 | nnzi |  |-  5 e. ZZ | 
						
							| 5 |  | nnz |  |-  ( Z e. NN -> Z e. ZZ ) | 
						
							| 6 |  | zltp1le |  |-  ( ( 5 e. ZZ /\ Z e. ZZ ) -> ( 5 < Z <-> ( 5 + 1 ) <_ Z ) ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( Z e. NN -> ( 5 < Z <-> ( 5 + 1 ) <_ Z ) ) | 
						
							| 8 | 7 | biimpd |  |-  ( Z e. NN -> ( 5 < Z -> ( 5 + 1 ) <_ Z ) ) | 
						
							| 9 | 2 8 | syl |  |-  ( Z e. GoldbachOddW -> ( 5 < Z -> ( 5 + 1 ) <_ Z ) ) | 
						
							| 10 |  | 5p1e6 |  |-  ( 5 + 1 ) = 6 | 
						
							| 11 | 10 | breq1i |  |-  ( ( 5 + 1 ) <_ Z <-> 6 <_ Z ) | 
						
							| 12 |  | 6re |  |-  6 e. RR | 
						
							| 13 | 2 | nnred |  |-  ( Z e. GoldbachOddW -> Z e. RR ) | 
						
							| 14 |  | leloe |  |-  ( ( 6 e. RR /\ Z e. RR ) -> ( 6 <_ Z <-> ( 6 < Z \/ 6 = Z ) ) ) | 
						
							| 15 | 12 13 14 | sylancr |  |-  ( Z e. GoldbachOddW -> ( 6 <_ Z <-> ( 6 < Z \/ 6 = Z ) ) ) | 
						
							| 16 | 11 15 | bitrid |  |-  ( Z e. GoldbachOddW -> ( ( 5 + 1 ) <_ Z <-> ( 6 < Z \/ 6 = Z ) ) ) | 
						
							| 17 |  | 6nn |  |-  6 e. NN | 
						
							| 18 | 17 | nnzi |  |-  6 e. ZZ | 
						
							| 19 | 2 | nnzd |  |-  ( Z e. GoldbachOddW -> Z e. ZZ ) | 
						
							| 20 |  | zltp1le |  |-  ( ( 6 e. ZZ /\ Z e. ZZ ) -> ( 6 < Z <-> ( 6 + 1 ) <_ Z ) ) | 
						
							| 21 | 20 | biimpd |  |-  ( ( 6 e. ZZ /\ Z e. ZZ ) -> ( 6 < Z -> ( 6 + 1 ) <_ Z ) ) | 
						
							| 22 | 18 19 21 | sylancr |  |-  ( Z e. GoldbachOddW -> ( 6 < Z -> ( 6 + 1 ) <_ Z ) ) | 
						
							| 23 |  | 6p1e7 |  |-  ( 6 + 1 ) = 7 | 
						
							| 24 | 23 | breq1i |  |-  ( ( 6 + 1 ) <_ Z <-> 7 <_ Z ) | 
						
							| 25 | 22 24 | imbitrdi |  |-  ( Z e. GoldbachOddW -> ( 6 < Z -> 7 <_ Z ) ) | 
						
							| 26 |  | isgbow |  |-  ( Z e. GoldbachOddW <-> ( Z e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime Z = ( ( p + q ) + r ) ) ) | 
						
							| 27 |  | eleq1 |  |-  ( 6 = Z -> ( 6 e. Odd <-> Z e. Odd ) ) | 
						
							| 28 |  | 6even |  |-  6 e. Even | 
						
							| 29 |  | evennodd |  |-  ( 6 e. Even -> -. 6 e. Odd ) | 
						
							| 30 |  | pm2.21 |  |-  ( -. 6 e. Odd -> ( 6 e. Odd -> 7 <_ Z ) ) | 
						
							| 31 | 28 29 30 | mp2b |  |-  ( 6 e. Odd -> 7 <_ Z ) | 
						
							| 32 | 27 31 | biimtrrdi |  |-  ( 6 = Z -> ( Z e. Odd -> 7 <_ Z ) ) | 
						
							| 33 | 32 | com12 |  |-  ( Z e. Odd -> ( 6 = Z -> 7 <_ Z ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( Z e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime Z = ( ( p + q ) + r ) ) -> ( 6 = Z -> 7 <_ Z ) ) | 
						
							| 35 | 26 34 | sylbi |  |-  ( Z e. GoldbachOddW -> ( 6 = Z -> 7 <_ Z ) ) | 
						
							| 36 | 25 35 | jaod |  |-  ( Z e. GoldbachOddW -> ( ( 6 < Z \/ 6 = Z ) -> 7 <_ Z ) ) | 
						
							| 37 | 16 36 | sylbid |  |-  ( Z e. GoldbachOddW -> ( ( 5 + 1 ) <_ Z -> 7 <_ Z ) ) | 
						
							| 38 | 9 37 | syld |  |-  ( Z e. GoldbachOddW -> ( 5 < Z -> 7 <_ Z ) ) | 
						
							| 39 | 1 38 | mpd |  |-  ( Z e. GoldbachOddW -> 7 <_ Z ) |