Metamath Proof Explorer


Theorem gcd2odd1

Description: The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023)

Ref Expression
Assertion gcd2odd1 ZOddZgcd2=1

Proof

Step Hyp Ref Expression
1 oddz ZOddZ
2 2z 2
3 gcdcom Z2Zgcd2=2gcdZ
4 1 2 3 sylancl ZOddZgcd2=2gcdZ
5 2ndvdsodd ZOdd¬2Z
6 2prm 2
7 coprm 2Z¬2Z2gcdZ=1
8 6 1 7 sylancr ZOdd¬2Z2gcdZ=1
9 5 8 mpbid ZOdd2gcdZ=1
10 4 9 eqtrd ZOddZgcd2=1