Metamath Proof Explorer


Theorem gcdmodi

Description: Calculate a GCD via Euclid's algorithm. Theorem 5.6 in ApostolNT p. 109. (Contributed by Mario Carneiro, 19-Feb-2014)

Ref Expression
Hypotheses gcdi.1 K0
gcdi.2 R0
gcdmodi.3 N
gcdmodi.4 KmodN=RmodN
gcdmodi.5 NgcdR=G
Assertion gcdmodi KgcdN=G

Proof

Step Hyp Ref Expression
1 gcdi.1 K0
2 gcdi.2 R0
3 gcdmodi.3 N
4 gcdmodi.4 KmodN=RmodN
5 gcdmodi.5 NgcdR=G
6 4 oveq1i KmodNgcdN=RmodNgcdN
7 1 nn0zi K
8 modgcd KNKmodNgcdN=KgcdN
9 7 3 8 mp2an KmodNgcdN=KgcdN
10 2 nn0zi R
11 modgcd RNRmodNgcdN=RgcdN
12 10 3 11 mp2an RmodNgcdN=RgcdN
13 6 9 12 3eqtr3i KgcdN=RgcdN
14 3 nnzi N
15 gcdcom RNRgcdN=NgcdR
16 10 14 15 mp2an RgcdN=NgcdR
17 13 16 5 3eqtri KgcdN=G