Metamath Proof Explorer


Theorem ghmfghm

Description: The function fulfilling the conditions of ghmgrp is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x X=BaseG
ghmabl.y Y=BaseH
ghmabl.p +˙=+G
ghmabl.q ˙=+H
ghmabl.f φxXyXFx+˙y=Fx˙Fy
ghmabl.1 φF:XontoY
ghmfghm.3 φGGrp
Assertion ghmfghm φFGGrpHomH

Proof

Step Hyp Ref Expression
1 ghmabl.x X=BaseG
2 ghmabl.y Y=BaseH
3 ghmabl.p +˙=+G
4 ghmabl.q ˙=+H
5 ghmabl.f φxXyXFx+˙y=Fx˙Fy
6 ghmabl.1 φF:XontoY
7 ghmfghm.3 φGGrp
8 5 1 2 3 4 6 7 ghmgrp φHGrp
9 fof F:XontoYF:XY
10 6 9 syl φF:XY
11 5 3expb φxXyXFx+˙y=Fx˙Fy
12 1 2 3 4 7 8 10 11 isghmd φFGGrpHomH