Metamath Proof Explorer


Theorem ghmgrp2

Description: A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmgrp2 FSGrpHomTTGrp

Proof

Step Hyp Ref Expression
1 eqid BaseS=BaseS
2 eqid BaseT=BaseT
3 eqid +S=+S
4 eqid +T=+T
5 1 2 3 4 isghm FSGrpHomTSGrpTGrpF:BaseSBaseTyBaseSxBaseSFy+Sx=Fy+TFx
6 5 simplbi FSGrpHomTSGrpTGrp
7 6 simprd FSGrpHomTTGrp