Metamath Proof Explorer


Theorem gneispaceel

Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispaceel FApdomFnFppn

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 1 gneispace2 FAFAF:domF𝒫𝒫domFpdomFnFppns𝒫domFnssFp
3 2 ibi FAF:domF𝒫𝒫domFpdomFnFppns𝒫domFnssFp
4 simpl pns𝒫domFnssFppn
5 4 2ralimi pdomFnFppns𝒫domFnssFppdomFnFppn
6 3 5 simpl2im FApdomFnFppn